\

SPM Additional Mathematics 2019, Paper 2 (Question 13)


Question 13:
Solution by scale drawing is not accepted.
Diagram 6 shows a quadrilateral ABCD such that AC and BD are straight lines.

Diagram 6

It is given that the area of ∆
ABC = 6 cm2 and ABC is obtuse.
(a) Find
(i) ABC,
(ii) the length, in cm, of AC,
(iii) BAC            [7 marks]
(b) Given BD = 7.3 cm and BCD = 90°, calculate the area in cm2, of ∆ACD. [3 marks]


Solution:
(a)(i)
Area of Δ ABC=6  cm 2 1 2 ×4×3.5×sinABC=6 ABC= 121 o

(a)(ii)
A C 2 = 4 2 + 3.5 2 2( 4 )( 3.5 )cos 121 o AC=6.532 cm

(a)(iii)
sinBAC 3.5 = sin121 6.532 sinBAC= 3.5×sin121 6.532 BAC= 27 o 20

(b)
cosCBD= 3.5 7.3 CBD= 61 o 21 ABD= 121 o 61 o 21           = 59 o 39 Area of ΔACD =Area of ΔCBD+Area of ΔABD6 =( 1 2 ×3.5×7.3×sin 61 o 21 )+( 1 2 ×4×7.3×sin 59 o 39 )6 =18.434  cm 2 6 =12.434  cm 2

Leave a Comment