SPM Additional Mathematics 2019, Paper 2 (Question 10) February 11, 2022February 7, 2022 by Question 10: ( a )(i) Prove tan A 2 = 1−cosA sinA . ( ii ) Hence, without using calculator, find the value of tan15 o . State your answer in the form p− q , where p and q are constants. (b)( i ) Sketch the graph of y=− 3 2 sinA for 0≤A≤2π. ( ii ) Hence, using the same axes, sketch a suitable straight line to find the number of solutions for the equation ( cot A 2 )( 1−cosA )=− A 2π for 0≤A≤2π. State the number solutions. Solution:(a)(i) Right hand side, 1−cosA sinA = 2 sin 2 A 2 2sin A 2 cos A 2 = sin A 2 cos A 2 =tan A 2 =( Left hand side ) (a)(ii) tan( 30 2 )= 1−cos 30 o sin 30 o tan 15 o = 1− 3 2 1 2 = 2− 3 2 1 2 =2− 3 (b)(i) (b)(ii) ( cot A 2 )( 1−cosA )=− A 2π 1 tan A 2 ( 1−cosA )=− A 2π ( sinA 1−cosA )( 1−cosA )=− A 2π sinA=− A 2π − 3 2 sinA=− A 2π ×( − 3 2 ) y= 3A 4π Number of solutions = 3