Processing math: 100%
\

SPM Additional Mathematics 2018, Paper 2 (Question 7 – 9)


Question 7 (10 marks):
(a) Prove sin(3x+π6)sin(3xπ6)=cos3x(b) Hence,(i) solve the equation sin(3x2+π6)sin(3x2π6)=12 for 0x2π and give your answer in the simplest fraction form in terms of π radian.(ii) sketch the graph of y=sin(3x+π6)sin(3xπ6)12 for 0xπ.


Solution:
(a) Left hand side,sin(3x+π6)sin(3xπ6)=[sin3xcosπ6+cos3xsinπ6][sin3xcosπ6cos3xsinπ6]=2[cos3xsinπ6]=2[cos3x(12)]=cos3x(right hand side)

(b)(i)sin(3x2+π6)sin(3x2π6)=12,0x2πcos3x2=123x2=π3,(2ππ3),(2π+π3)3x2=π3,5π3,7π3x=2π9,10π9,14π9


(b)(ii) y=sin(3x+π6)sin(3xπ6)12 for 0xπ.y=cos3x12




Question 8 (10 marks):
Diagram 5 shows triangles OAQ and OPB where point P lies on OA and point Q lies on OB. The straight lines AQ and PB intersect at point R.
It is given that OA=18x˜, OB=16y˜, OP:PA=1:2, OQ:QB=3:1,PR=mPB and QR=nQA, where m and n are constants.(a) Express OR in terms of   (i) m, x˜ and y˜,   (ii) n, x˜ and y˜,(b) Hence, find the value of m and of n.(c) Given |x˜|=2 units, |y˜|=1 unit and OA is perpendicular to OB calculate |PR|.


Solution
(a)(i)
OR=OP+PR =13OA+mPB =13(18x˜)+m(PO+OB) =6x˜+m(6x˜+16y˜)

(a)(ii)
OR=OQ+QR =34OB+nQA =34(16y˜)+n(QO+OA) =12y˜+n(12y˜+18x˜) =(1212n)y˜+18nx˜



(b)
6x˜+m(6x˜+16y˜)=(1212n)y˜+18nx˜6x˜6mx˜+16my˜=18nx˜+12y˜12ny˜by comparison;66m=18n1m=3nm=13n…………..(1)16m=1212n4m=33n…………..(2)Substitute (1) into (2),4(13n)=33n412n=33n9n=1n=19Substitute n=19 into (1),m=13(19)m=23



(c)
|x˜|=2|y˜|=1 PR=23PB =23(6x˜+16y˜) =4x˜+323y˜|PR|=[4(2)]2+[323(1)]2  =16009  =403 units



Question 9 (10 marks):
A study shows that the credit card balance of the customers is normally distributed as shown in Diagram 6.

(a)(i) Find the standard deviation.
(ii) If 30 customers are chosen at random, find the number of customers who have a credit card balance between RM1800 and RM3000.
(b) It is found that 25% of the customers have a credit card balance less than RM y.
Find the value of y.


Solution:
(a)(i)
μ=2870,x=3770P(X>3770)=15.87%P(Z>37702870σ)=0.1587P(Z>1.0)=0.158737702870σ=1.0σ=900


(a)(ii)
P(1800<X<3000)=P(18002870900<Z<30002870900)=P(1.189<Z<0.144)=1P(Z1.189)P(Z0.144)=10.11720.4427=0.4401Number of customers=0.4401×30  =14


(b)
μ=2870,x=yP(x<y)=25%P(Z<y2870900)=0.25y2870900=0.674y=2263.40


Leave a Comment