Processing math: 100%
\

SPM Additional Mathematics 2018, Paper 2 (Question 5 & 6)


Question 5 (7 marks):
Mathematics Society of SMK Mulia organized a competition to design a logo for the society.


Diagram 3 shows the circular logo designed by Adrian. The three blue coloured regions are congruent. It is given that the perimeter of the blue coloured region is 20π cm.
[Use π = 3.142]
Find
(a) the radius, in cm, of the logo to the nearest integer,
(b) the area, in cm2, of the yellow coloured region.


Solution:
(a)
6 arcs =20π6rθ=20π6r[60o×π180o3]=20π2πr=20πr=10 cm

(b)

Area of yellow coloured region=3[area of triangle OAB]6[area of segment]=3[12absinC]6[12r2(θsinθ)]=3[12(10)(10)sin120o]6[12(10)2(θsinθ)]=3(43.3013)6[50(1.0473sin1.0473)]change to rad modeθ=60o×3.142180o=1.0473=129.90396(9.0612)=129.903954.3672=75.54 cm2



Question 6 (6 marks):
Diagram 4 shows the front view of a part of a roller coaster track in a miniature park.

The curve part of the track of the roller coaster is represented by an equation y=164x3316x2 , with point A as the region.
Find the shortest vertical distance, in m, from the track to ground level.


Solution:
y=164x3316x2 …………… (1)dydx=3(164)x22(316)x1=364x238xAt turning point, dydx=0364x238x=0x(364x38)=0x=0  or364x38=0364x=38x=38×643x=8Substitute values of x into equation (1):When x=0,y=164(0)3316(0)2y=0When x=8,y=164(8)3316(8)2y=4Thus, turning points : (0, 0) and (8,4)

dydx=364x238xd2ydx2=2(364)x38  =332x38When x=0,d2ydx2=332(0)38  =38(<0)(0, 0) is maximum point.When x=8,d2ydx2=332(8)38  =38(>0)(8,4) is minimum point.Shortest vertical distance between track and ground level is at the minimum point.Shortest vertical distance=54=1 m


Leave a Comment