\

SPM Additional Mathematics 2019, Paper 2 (Question 2)


Question 2:
Express 2n + 2 – 2n + 1 + 2n – 1 in the form p(2n – 1), where p is a constant.
Hence, solve the equation 8(2n + 2 – 2n + 1 + 2n – 1) = 5( 2 n 2 ).
[6 marks]


Solution:

2 n+2 2 n+1 + 2 n1 =( 2 n × 2 2 )( 2 n × 2 1 )+( 2 n ÷ 2 1 ) = 2 n ( 42+ 1 2 ) = 2 n ( 5 2 ) =5( 2 n 2 ) =5( 2 n1 ) p=5

8( 2 n+2 2 n+1 + 2 n1 )=5( 2 n 2 ) 8( 5 )( 2 n1 )=5 ( 2 ) n 2 2 3 × 2 n1 = 2 n 2 3+n1= n 2 n 2 n2=0 ( n+1 )( n2 )=0 n=1  or  n=2

Leave a Comment