Question 15:
Prove the identity2cos2A+1=sec2AProve the identity2cos2A+1=sec2A
Solution:
LHS=2cos2A+1=2(2cos2A−1)+1←cos2A=2cos2A−1=22cos2A=1cos2A=sec2A=RHS∴ProvenLHS=2cos2A+1=2(2cos2A−1)+1←cos2A=2cos2A−1=22cos2A=1cos2A=sec2A=RHS∴Proven
Prove the identity2cos2A+1=sec2AProve the identity2cos2A+1=sec2A
Solution:
LHS=2cos2A+1=2(2cos2A−1)+1←cos2A=2cos2A−1=22cos2A=1cos2A=sec2A=RHS∴ProvenLHS=2cos2A+1=2(2cos2A−1)+1←cos2A=2cos2A−1=22cos2A=1cos2A=sec2A=RHS∴Proven
Question 16:
Prove the identity2tanA2−sec2A=tan2AProve the identity2tanA2−sec2A=tan2A
Solution:
LHS=2tanA2−sec2A=2tanA2−(tan2A+1)←tan2A+1=sec2A=2tanA1−tan2A=tan2A=RHS∴ProvenLHS=2tanA2−sec2A=2tanA2−(tan2A+1)←tan2A+1=sec2A=2tanA1−tan2A=tan2A=RHS∴Proven
Prove the identity2tanA2−sec2A=tan2AProve the identity2tanA2−sec2A=tan2A
Solution:
LHS=2tanA2−sec2A=2tanA2−(tan2A+1)←tan2A+1=sec2A=2tanA1−tan2A=tan2A=RHS∴ProvenLHS=2tanA2−sec2A=2tanA2−(tan2A+1)←tan2A+1=sec2A=2tanA1−tan2A=tan2A=RHS∴Proven
Question 17:
Prove the identitytanx+cotx=2cosec2xProve the identitytanx+cotx=2cosec2x
Solution:
LHS=tanx+cotx=sinxcosx+cosxsinx=sin2x+cos2xcosxsinx=1cosxsinx←sin2x+cos2x=1=112sin2x←sin2x=2sinxcosx12sin2x=sinxcosx=2sin2x=2(1sin2x)=2cosec2x=RHS∴ProvenLHS=tanx+cotx=sinxcosx+cosxsinx=sin2x+cos2xcosxsinx=1cosxsinx←sin2x+cos2x=1=112sin2x←sin2x=2sinxcosx12sin2x=sinxcosx=2sin2x=2(1sin2x)=2cosec2x=RHS∴Proven
Prove the identitytanx+cotx=2cosec2xProve the identitytanx+cotx=2cosec2x
Solution:
LHS=tanx+cotx=sinxcosx+cosxsinx=sin2x+cos2xcosxsinx=1cosxsinx←sin2x+cos2x=1=112sin2x←sin2x=2sinxcosx12sin2x=sinxcosx=2sin2x=2(1sin2x)=2cosec2x=RHS∴ProvenLHS=tanx+cotx=sinxcosx+cosxsinx=sin2x+cos2xcosxsinx=1cosxsinx←sin2x+cos2x=1=112sin2x←sin2x=2sinxcosx12sin2x=sinxcosx=2sin2x=2(1sin2x)=2cosec2x=RHS∴Proven
Question 18:
Prove the identitycosx−sin2xcos2x+sinx−1=1tanx
Solution:
LHS=cosx−sin2xcos2x+sinx−1=cosx−2sinxcosx(1−2sin2x)+sinx−1←cos2x=1−2sin2x=cosx(1−2sinx)sinx−2sin2x=cosx(1−2sinx)sinx(1−2sinx)=cosxsinx=cotx=1tanx=RHS∴Proven
Prove the identitycosx−sin2xcos2x+sinx−1=1tanx
Solution:
LHS=cosx−sin2xcos2x+sinx−1=cosx−2sinxcosx(1−2sin2x)+sinx−1←cos2x=1−2sin2x=cosx(1−2sinx)sinx−2sin2x=cosx(1−2sinx)sinx(1−2sinx)=cosxsinx=cotx=1tanx=RHS∴Proven