\

6.7.6 Trigonometric Functions Short Questions (Question 15 – 18)


Question 15:
Prove the identity2cos2A+1=sec2AProve the identity2cos2A+1=sec2A

Solution:
LHS=2cos2A+1=2(2cos2A1)+1cos2A=2cos2A1=22cos2A=1cos2A=sec2A=RHSProvenLHS=2cos2A+1=2(2cos2A1)+1cos2A=2cos2A1=22cos2A=1cos2A=sec2A=RHSProven
 


Question 16:
Prove the identity2tanA2sec2A=tan2AProve the identity2tanA2sec2A=tan2A

Solution:
LHS=2tanA2sec2A=2tanA2(tan2A+1)tan2A+1=sec2A=2tanA1tan2A=tan2A=RHSProvenLHS=2tanA2sec2A=2tanA2(tan2A+1)tan2A+1=sec2A=2tanA1tan2A=tan2A=RHSProven



Question 17:
Prove the identitytanx+cotx=2cosec2xProve the identitytanx+cotx=2cosec2x

Solution:
LHS=tanx+cotx=sinxcosx+cosxsinx=sin2x+cos2xcosxsinx=1cosxsinxsin2x+cos2x=1=112sin2xsin2x=2sinxcosx12sin2x=sinxcosx=2sin2x=2(1sin2x)=2cosec2x=RHSProvenLHS=tanx+cotx=sinxcosx+cosxsinx=sin2x+cos2xcosxsinx=1cosxsinxsin2x+cos2x=1=112sin2xsin2x=2sinxcosx12sin2x=sinxcosx=2sin2x=2(1sin2x)=2cosec2x=RHSProven
 


Question 18:
Prove the identitycosxsin2xcos2x+sinx1=1tanx

Solution:
LHS=cosxsin2xcos2x+sinx1=cosx2sinxcosx(12sin2x)+sinx1cos2x=12sin2x=cosx(12sinx)sinx2sin2x=cosx(12sinx)sinx(12sinx)=cosxsinx=cotx=1tanx=RHSProven

Leave a Comment