Question 11:
Prove the identitycos2x1−sinx=1+sinx
Solution:
LHS=cos2x1−sinx=1−sin2x1−sinx←sin2x+cos2x=1=(1+sinx)(1−sinx)1−sinx=1+sinx=RHS∴Proven
Prove the identitycos2x1−sinx=1+sinx
Solution:
LHS=cos2x1−sinx=1−sin2x1−sinx←sin2x+cos2x=1=(1+sinx)(1−sinx)1−sinx=1+sinx=RHS∴Proven
Question 12:
Prove the identitysin2x−cos2x=tan2x−1tan2x+1
Solution:
RHS=tan2x−1tan2x+1=sin2xcos2x−1sin2xcos2x+1←tanx=sinxcosx=sin2x−cos2xcos2xsin2x+cos2xcos2x=sin2x−cos2xsin2x+cos2x=sin2x−cos2x←sin2x+cos2x=1=LHS∴Proven
Prove the identitysin2x−cos2x=tan2x−1tan2x+1
Solution:
RHS=tan2x−1tan2x+1=sin2xcos2x−1sin2xcos2x+1←tanx=sinxcosx=sin2x−cos2xcos2xsin2x+cos2xcos2x=sin2x−cos2xsin2x+cos2x=sin2x−cos2x←sin2x+cos2x=1=LHS∴Proven
Question 13:
Prove the identitytan2θ−sin2θ=tan2θsin2θ
Solution:
LHS=tan2θ−sin2θ=sin2θcos2θ−sin2θ=sin2θ−sin2θcos2θcos2θ=sin2θ(1−cos2θ)cos2θ=sin2θsin2θcos2θ=(sin2θcos2θ)(sin2θ)=tan2θsin2θ=RHS∴Proven
Prove the identitytan2θ−sin2θ=tan2θsin2θ
Solution:
LHS=tan2θ−sin2θ=sin2θcos2θ−sin2θ=sin2θ−sin2θcos2θcos2θ=sin2θ(1−cos2θ)cos2θ=sin2θsin2θcos2θ=(sin2θcos2θ)(sin2θ)=tan2θsin2θ=RHS∴Proven
Question 14:
Prove the identity cosec2θ(sec2θ−tan2θ)−1=cot2θ
Solution:
LHS=cosec2θ(sec2θ−tan2θ)−1=cosec2θ(1)−1←tan2θ+1=sec2θsec2θ−tan2θ=1=cosec2θ−1=cot2θ←1+cot2θ=cosec2θcosec2θ−1=cot2θ=RHS∴Proven
Prove the identity cosec2θ(sec2θ−tan2θ)−1=cot2θ
Solution:
LHS=cosec2θ(sec2θ−tan2θ)−1=cosec2θ(1)−1←tan2θ+1=sec2θsec2θ−tan2θ=1=cosec2θ−1=cot2θ←1+cot2θ=cosec2θcosec2θ−1=cot2θ=RHS∴Proven