Processing math: 100%
\

6.7.5 Trigonometric Functions Short Questions (Question 11 – 14)


Question 11:
Prove the identitycos2x1sinx=1+sinx

Solution:

LHS=cos2x1sinx=1sin2x1sinxsin2x+cos2x=1=(1+sinx)(1sinx)1sinx=1+sinx=RHSProven



Question 12:
Prove the identitysin2xcos2x=tan2x1tan2x+1

Solution:

RHS=tan2x1tan2x+1=sin2xcos2x1sin2xcos2x+1tanx=sinxcosx=sin2xcos2xcos2xsin2x+cos2xcos2x=sin2xcos2xsin2x+cos2x=sin2xcos2xsin2x+cos2x=1=LHSProven


Question 13:
Prove the identitytan2θsin2θ=tan2θsin2θ

Solution:

LHS=tan2θsin2θ=sin2θcos2θsin2θ=sin2θsin2θcos2θcos2θ=sin2θ(1cos2θ)cos2θ=sin2θsin2θcos2θ=(sin2θcos2θ)(sin2θ)=tan2θsin2θ=RHSProven



Question 14:
Prove the identity cosec2θ(sec2θtan2θ)1=cot2θ

Solution:

LHS=cosec2θ(sec2θtan2θ)1=cosec2θ(1)1tan2θ+1=sec2θsec2θtan2θ=1=cosec2θ1=cot2θ1+cot2θ=cosec2θcosec2θ1=cot2θ=RHSProven


Leave a Comment