\

6.8.1 Trigonometric Functions Long Questions (Question 1 & 2)


Question 1:
(a) Sketch the graph of y = cos 2x for 0°  x  180°.
(b) Hence, by drawing a suitable straight line on the same axes, find the number of solutions satisfying the equation 2 sin2x=2x180 for 0°  x  180°.

Solution:

(a)(b)

2 sin2x=2x18012 sin2x=1(2x180)cos2x=x1801y=x1801x=0,  y=1x=180,  y=0Number of solutions = 2



Question 2:
(a) Prove that 2tanx2sec2x=tan2x.  
(b)(i) Sketch the graph of y = – tan 2x for 0  x ≤ π .
(b)(ii) Hence, by drawing a suitable straight line on the same axes, find the number of solutions satisfying the equation 3xπ+2tanx2sec2x=0  for 0  x π .
State the number of solutions.

Solution:
(a)
2tanx2sec2x=tan2xLHS:2tanx2sec2x=2tanx2(1+tan2x)=2tanx2tan2x=tan2x(RHS)


(b)(i) 


(b)(ii)
3xπ+2tanx2sec2x=03xπ+tan2x=0from part (a)tan2x=3xπ y=3xπThe suitable straight line to sketch is y=3xπ.

When x = 0, y = 0.
When x = π, = 3.
  Number of solutions = 3

Leave a Comment