Question 5:
Solution:
(a)
(b)

Using sine rule,sin∠ADC16.39=sin45∘14sin∠ADC=16.39×sin45∘14sin∠ADC=0.8278∠ADC=55.87∘ or (180∘−55.87∘)∠ADC=55.87∘ or 124.13∘
(c)(i)
Acute angle of ∠ADC=55.87∘∠CAD=180∘−45∘−55.87∘=79.13∘CDsin79.13∘=14sin45∘CD=14×sin79.13∘sin45∘=19.44 cm
(c)(ii)
Area of quadrilateral ABCD= Area of Δ ABC+Area of Δ ACD=12(16)(12)sin70∘+12(16.39)(14)sin79.13∘=90.21+112.67=202.88 cm2
The diagram below shows a triangle ABC.


(a) Calculate the length, in cm, of AC.
(b) A quadrilateral ABCD is now formed so that AC is a diagonal, ∠ACD = 45° and AD = 14 cm. Calculate the two possible values of ∠ADC.
(c) By using the acute ∠ADC from (b), calculate
(i) the length, in cm, of CD,
(ii) the area, in cm2, of the quadrilateral ABCD
Solution:
(a)
Using cosine rule,
AC2 = AB2 + BC2 – 2 (AB)(BC) ∠ABC
AC2 = 162 + 122 – 2 (16)(12) cos 70o
AC2 = 400 – 131.33
AC2 = 268.67
AC = 16.39 cm
(b)

Using sine rule,sin∠ADC16.39=sin45∘14sin∠ADC=16.39×sin45∘14sin∠ADC=0.8278∠ADC=55.87∘ or (180∘−55.87∘)∠ADC=55.87∘ or 124.13∘
(c)(i)
Acute angle of ∠ADC=55.87∘∠CAD=180∘−45∘−55.87∘=79.13∘CDsin79.13∘=14sin45∘CD=14×sin79.13∘sin45∘=19.44 cm
(c)(ii)
Area of quadrilateral ABCD= Area of Δ ABC+Area of Δ ACD=12(16)(12)sin70∘+12(16.39)(14)sin79.13∘=90.21+112.67=202.88 cm2
Question 6:
Diagram below shows trapezium ABCD.
(a) Calculate
(i) ∠BAC.
(ii) the length, in cm, of AD.
(b) The straight line AB is extended to B’ such that BC = B’C.
(i) Sketch the trapezium AB’CD.
(ii) Calculate the area, in cm2, of ∆BB’C.
Solution:
(a)(i)
52=42+72−2(4)(7)cos∠BAC25=16+49−56cos∠BAC56cos∠BAC=40cos∠BAC=4056 ∠BAC=cos−14056 =44o25‘
(a)(ii)
ADsin∠DCA=7sin115oADsin44o25‘=7sin115o←(∠DCA=∠BAC) AD=7sin115o×sin44o25‘ AD=5.406 cm
(b)(i)

(b)(ii)
sin∠ABC7=sin44o25‘5sin∠ABC=sin44o25‘5×7 =78o28‘∠ABC=180o−78o28‘∠ABC=101o32‘(obtuse angle)∠CBB‘=180o−101o32‘=78o28‘∠BCB‘=180o−78o28‘−78o28‘=23o4‘Area of △BB‘C=12×5×5×23o4‘ =4.898 cm2
Diagram below shows trapezium ABCD.

(i) ∠BAC.
(ii) the length, in cm, of AD.
(b) The straight line AB is extended to B’ such that BC = B’C.
(i) Sketch the trapezium AB’CD.
(ii) Calculate the area, in cm2, of ∆BB’C.
Solution:
(a)(i)
52=42+72−2(4)(7)cos∠BAC25=16+49−56cos∠BAC56cos∠BAC=40cos∠BAC=4056 ∠BAC=cos−14056 =44o25‘
(a)(ii)
ADsin∠DCA=7sin115oADsin44o25‘=7sin115o←(∠DCA=∠BAC) AD=7sin115o×sin44o25‘ AD=5.406 cm
(b)(i)

(b)(ii)
sin∠ABC7=sin44o25‘5sin∠ABC=sin44o25‘5×7 =78o28‘∠ABC=180o−78o28‘∠ABC=101o32‘(obtuse angle)∠CBB‘=180o−101o32‘=78o28‘∠BCB‘=180o−78o28‘−78o28‘=23o4‘Area of △BB‘C=12×5×5×23o4‘ =4.898 cm2