8.7.3 Vectors, SPM Practice (Question 5 & 6) January 21, 2022October 12, 2020 by Question 5: Diagram below shows a triangle KLM. It is given that KP:PL=1:2, LR:RM=2:1, KP → =2 x ˜ , KM → =3 y ˜ . (a) Express in terms of x ˜ and y ˜ , (i) MP → (ii) MR → (b) Given x ˜ =2 i ˜ and y ˜ =− i ˜ +4 j ˜ , find | MR | → . (c) Given MQ → =h MP → and QR → =n KR → , where h and n are constants, find the value of h and of n. Solution: (a)(i) MP → = MK → + KP → =−3 y ˜ +2 x ˜ =2 x ˜ −3 y ˜ (a)(ii) MR → = 1 3 ML → = 1 3 ( MK → + KL → ) = 1 3 ( −3 y ˜ +6 x ˜ ) =2 x ˜ − y ˜ (b) MR → =2( 2 i ˜ )−( − i ˜ +4 j ˜ ) =4 i ˜ + i ˜ −4 j ˜ =5 i ˜ −4 j ˜ | MR → |= 5 2 + ( −4 ) 2 = 41 units (c) MQ → + QR → = MR → h MP → +n KR → = MR → h( 2 x ˜ −3 y ˜ )+n( KM → + MR → )=2 x ˜ − y ˜ h( 2 x ˜ −3 y ˜ )+n( 3 y ˜ +2 x ˜ − y ˜ )=2 x ˜ − y ˜ 2h x ˜ −3h y ˜ +2n x ˜ +2n y ˜ =2 x ˜ − y ˜ ( 2h+2n ) x ˜ +( −3h+2n ) y ˜ =2 x ˜ − y ˜ 2h+2n=2……….(1) −3h+2n=−1……….(2) ( 1 )−( 2 ):5h=3 h= 3 5 From ( 1 ):h+n=1 3 5 +n=1 n=1− 3 5 n= 2 5 Question 6:Diagram below shows a trapezium OABC and point D lies on AC. It is given that OC → =18 b ˜ , OA → =6 a ˜ and OC → =2 AB → . (a) Express in terms of a ˜ and b ˜ , (i) AC → (ii) OB → (b) It is given that AD → =k AC → , where k is a constant. Find the value of k if the points O, D and B are collinear. Solution: (a)(i) AC → = AO → + OC → =−6 a ˜ +18 b ˜ =18 b ˜ −6 a ˜ (a)(ii) OC → =2 AB → 18 b ˜ =2( AO → + OB → ) 18 b ˜ =2( −6 a ˜ + OB → ) 18 b ˜ =−12 a ˜ +2 OB → OB → =6 a ˜ +9 b ˜ (b) OD → =h OB → =h( 6 a ˜ +9 b ˜ ) =6h a ˜ +9h b ˜ AD → = OD → − OA → =6h a ˜ +9h b ˜ −6 a ˜ = a ˜ ( 6h−6 )+9h b ˜ AD → =k AC → a ˜ ( 6h−6 )+9h b ˜ =k( 18 b ˜ −6 a ˜ ) a ˜ ( 6h−6 )+9h b ˜ =−6k a ˜ +18k b ˜ 6h−6=−6k h−1=−k h=1−k……….( 1 ) 9h=18k h=2k From ( 1 ), 1−k=2k 3k=1 k= 1 3