Processing math: 100%
\

2.13.6 Quadratic Functions, SPM Practice (Long Questions)


Question 11:


Diagram above shows the graphs of the curves y = x2 + xkx + 5 and y = 2(x – 3) – 4h that intersect the x-axis at two points. Find
(a) the value of k and of h,
(b) the minimum value of each curve.


Solution:
(a)
y=x2+xkx+5=x2+(1k)x+5=[x+(1k)2]2(1k2)2+5axis of symmetry of the graph isx=(1k)2

y=2(x3)24haxis of symmetry of the graph is x=3. 1k2=31+k=6k=7

Substitute k=7 into equationy=x2+x7x+5  =x26x+5At x-axis,y=0;x26x+5=0(x1)(x5)=0x=1,5

At point (1,0)Substitute x=1,y=0 into the graph:y=2(x3)24h0=2(13)24h4h=2(4)4h=8h=2

(b)
For y=x26x+5=(x3)29+5=(x3)24 Minimum value is 4.For y=2(x3)28, minimum value is8.

Question 12:
Quadratic function f(x) = x2 – 4px + 5p2 + 1 has a minimum value of m2 + 2p, where m and p are constants.
(a) By using the method of completing the square, shows that m = p – 1.
(b) Hence, find the values of p and of m if the graph of the quadratic function is symmetry at x = m2 – 1.

Solution:
(a)
f(x)=x24px+5p2+1=x24px+(4p2)2(4p2)2+5p2+1=(x2p)2+p2+1Minimum value,m2+2p=p2+1m2=p22p+1m2=(p1)2m=p1

(b)
x=m212p=m21p=m212Given m=p1p=m+1m+1=m2122m+2=m21m22m3=0(m3)(m+1)=0m=3 or 1When m=3,p=3212=4When m=1,p=(1)212=0

Leave a Comment