Processing math: 100%
\

2.13.5 Quadratic Functions, SPM Practice (Paper 2)


Question 9:
Given that the quadratic function f(x) = 2x2px + p has a minimum value of –18 at x = 1.
(a) Find the values of p and q.
(b) With the value of p and q found in (a), find the values of x, where graph f(x) cuts the x-axis.
(c) Hence, sketch the graph of f(x).

Solution:
(a)
f(x)=2x2px+q=2[x2p2x+q2]=2[(x+p4)2(p4)2+q2]=2[(xp4)2p216+q2]=2(xp4)2p28+q


p4=1(1)and p28+q=18(2)From(1),p=4.Substitute p=4 into (2):(4)28+q=18  168+q=18 q=18+2   =16


(b)
f(x)=2x24x16f(x)=0 when it cuts x-axis2x24x16=0x22x8=0(x4)(x+2)=0x=4,2Graph f(x) cuts x-axis at x=2 and x=4.

(c)


Question 10:
(a) Find the range of values of k if the equation x2kx + 3k – 5 = 0 does not have real roots.
(b) Show that the quadratic equation hx2 – (h + 3)x + 1 = 0 has real and distinc roots for all values of h.

Solution:
(a)
x2kx+(3k5)=0If the above equation has no real root, b24ac<0.k24(3k5)<0k212k+20<0(k2)(k10)<0

Graph function y = (k – 2)(k – 10) cuts the horizontal line at k = 2 and k = 10 when b2 – 4ac < 0.



The range of values of k that satisfy the inequality above is 2 < k < 10.


(b)
hx2(h+3)x+1=0b24ac=(h+3)24(h)(1)=h2+6h+94h=h2+2h+9=(h+22)2(22)2+9=(h+1)21+9=(h+1)2+8

The minimum value of (h + 1) + 8 is 8, a positive value. Therefore, b2 – 4ac > 0 for all values of h.
Hence, quadratic equation hx2 – (h + 3)x + 1 = 0 has real and distinc roots for all values of h.

Leave a Comment