\

6.8.2 Trigonometric Functions Long Questions (Question 3 & 4)


Question 3:
(a) Sketch the graph of y=32cos2x for 0x32π.
(b) Hence, using the same axes, sketch a suitable straight line to find the number of solutions to the equation 43πxcos2x=32 for 0x32π
State the number of solutions.

Solution:

(a)(b)



43πxcos2x=32cos2x=43πx3232cos2x=32(43πx32)y=2πx94To sketch the graph of y=2πx94x=0, y=94x=3π2, y=34Number of solutions =Number of intersection points= 3



Question 4:
(a)Prove that(cosecxsecxsecxcosecx)2=1sin2x 
[3 marks]
(b)(i) Sketch the graph of y = 1 – sin2x for 0 ≤ x ≤ 2π.

(b)(ii) Hence, using the same axes, sketch a suitable straight line to find the number of solutions to the equation 2(cosecxsecxsecxcosecx)2=xπfor 0 ≤ x ≤ 2π.
State the number of soultions. 
[7 marks]

Solution:
(a)
LHS=(cosecxsecxsecxcosecx)2=(cosecxsecxcosecxsecxsecxcosecx)2=(1secx1cosecx)2=(cosxsinx)2=cos2x2cosxsinx+sin2x=1sin2x(RHS)



(b)(i)




(b)(ii)
2(cosecxsecxsecxcosecx)2=xπ2(1sin2x)=xπFrom 4(a)2y=xπFrom 4(b)(i)y=2xπ(suitable straight line)

x
0
π
y
2
1
0

From the graph, there is 3 number of solutions.


Leave a Comment