\

2.11.2 Differentiation SPM Practice (Paper 2 Question 6 – 10)


Question 6 (SPM 2018 – 6 marks):
Diagram 4 shows the front view of a part of a roller coaster track in a miniature park.

The curve part of the track of the roller coaster is represented by an equation y= 1 64 x 3 3 16 x 2 , with point A as the region.
Find the shortest vertical distance, in m, from the track to ground level.


Solution:
y= 1 64 x 3 3 16 x 2  …………… ( 1 ) dy dx =3( 1 64 ) x 2 2( 3 16 ) x 1 = 3 64 x 2 3 8 x At turning point,  dy dx =0 3 64 x 2 3 8 x=0 x( 3 64 x 3 8 )=0 x=0  or 3 64 x 3 8 =0 3 64 x= 3 8 x= 3 8 × 64 3 x=8 Substitute values of x into equation (1): When x=0, y= 1 64 ( 0 ) 3 3 16 ( 0 ) 2 y=0 When x=8, y= 1 64 ( 8 ) 3 3 16 ( 8 ) 2 y=4 Thus, turning points : ( 0, 0 ) and ( 8,4 )

dy dx = 3 64 x 2 3 8 x d 2 y d x 2 =2( 3 64 )x 3 8   = 3 32 x 3 8 When x=0, d 2 y d x 2 = 3 32 ( 0 ) 3 8   = 3 8 ( <0 ) ( 0, 0 ) is maximum point. When x=8, d 2 y d x 2 = 3 32 ( 8 ) 3 8   = 3 8 ( >0 ) ( 8,4 ) is minimum point. Shortest vertical distance between track  and ground level is at the minimum point. Shortest vertical distance =54 =1 m



Question 7 (SPM 2019):
Diagram 1 shows a sector POA with centre O.

It is given that the length of arc PB is 2.56 cm. [Use π = 3.142]
Calculate
(a) ∠ POB in radians, [2 marks]
(b) the area, in cm2, of the shaded region. [4 marks]


Solution:
(a)
s=rθ 2.56=10θ θ=0.256 radian

(b)
Area of OBP = 1 2 r 2 θ = 1 2 × 10 2 ×0.256 =12.8  cm 2 AC 10 =tan 60 o AC=17.32 Area of shaded region ABC =( 1 2 ×10×17.32 )( 1 2 × 10 2 × π 3 ) =34.233  cm 2 Total area of shaded regions =12.8+34.233 =47.033  cm 2

 

Leave a Comment