\

2.10.3 Differentiation SPM Practice (Paper 1 Question 21 – 30)


Question 21:

The diagram shows a conical container with diameter 0.8m and height 0.6m. Water is poured into the container at a constant rate of 0.02m3s-1. Calculate the rate of change of the height of the water level when the height of water level is 0.5m.


Solution:

Let,  h  = height of the water level r  = radius of the water surface V  = volume of the water r h = 0.4 0.6 Concept of similar triangles r h = 2 3 r = 2 3 h Volume of water,  V = 1 3 π r 2 h V = 1 3 π ( 2 3 h ) 2 h V = 4 27 π h 3 d V d h = ( 3 ) 4 27 π h 2 d V d h = 4 9 π h 2 The rate of change of the height of the water level when the height of water level is 0 .5  m = d h d t . d h d t = d h d V × d V d t Chain rule d h d t = 9 4 π h 2 × 0.02 Given  d V d t = 0.02 d h d t = 9 4 π ( 0.5 ) 2 × 0.02 d h d t = 0.0572   m s 1

Question 22 (SPM 2019):
The curve y = px4 + 2x has turning point at (-1, q).
Find the value of p and of q.
[4 marks]

Answer:
$$ \begin{aligned} & y=p x^4+2 x \\ & \frac{d y}{d x}=4 p x^3+2 \\ & x=-1, \frac{d y}{d x}=-4 p+2=0 \\ & 4 p=2 \\ & p=\frac{1}{2} \end{aligned} $$


$$ \begin{aligned} (-1, q) & : x=-1, y=q \\ y & =p x^4+2 x \\ q & =\frac{1}{2}(-1)^4+2(-1) \\ = & \frac{1}{2}-2=-\frac{3}{2} \end{aligned} $$

Leave a Comment