Question 21:
Solution:
The diagram shows a conical container with diameter 0.8m and height 0.6m. Water is poured into the container at a constant rate of 0.02m3s-1. Calculate the rate of change of the height of the water level when the height of water level is 0.5m.
Solution:
Question 22 (SPM 2019):
The curve y = px4 + 2x has turning point at (-1, q).
Find the value of p and of q.
[4 marks]
Answer:
$$ \begin{aligned} & y=p x^4+2 x \\ & \frac{d y}{d x}=4 p x^3+2 \\ & x=-1, \frac{d y}{d x}=-4 p+2=0 \\ & 4 p=2 \\ & p=\frac{1}{2} \end{aligned} $$
$$ \begin{aligned} (-1, q) & : x=-1, y=q \\ y & =p x^4+2 x \\ q & =\frac{1}{2}(-1)^4+2(-1) \\ = & \frac{1}{2}-2=-\frac{3}{2} \end{aligned} $$
The curve y = px4 + 2x has turning point at (-1, q).
Find the value of p and of q.
[4 marks]
Answer:
$$ \begin{aligned} & y=p x^4+2 x \\ & \frac{d y}{d x}=4 p x^3+2 \\ & x=-1, \frac{d y}{d x}=-4 p+2=0 \\ & 4 p=2 \\ & p=\frac{1}{2} \end{aligned} $$
$$ \begin{aligned} (-1, q) & : x=-1, y=q \\ y & =p x^4+2 x \\ q & =\frac{1}{2}(-1)^4+2(-1) \\ = & \frac{1}{2}-2=-\frac{3}{2} \end{aligned} $$

