\

1.5.2 Circular Measure SPM Practice (Paper 2 Question 6 – 10)

Question 6:

In the diagram above, AXB is an arc of a circle centre O and radius 10 cm with  ∠AOB = 0.82 radian. AYB is an arc of a circle centre P and radius 5 cm with  ∠APB = θ.
Calculate:
(a) the length of the chord AB,
(b) the value of θ in radians,
(c) the difference in length between the arcs AYB and AXB.



Solution:
(a)
1 2 AB=sin0.41×10( Change the calculator to Rad mode ) 1 2 AB=3.99 The length of chord AB=3.99×2=7.98 cm.

(b)
Let  1 2 θ=α, θ=2α sinα= 3.99 5 α=0.924 rad θ=0.924×2=1.848 radian.

(c)
Using s =
Arcs AXB = 10 × 0.82 = 8.2 cm
Arcs AYB = 5 × 1.848 = 9.24 cm

Difference in length between the arcs AYB and AXB
= 9.24 – 8.2
= 1.04 cm


Question 7:
Diagram below shows a semicircle PTS, centre O and radius 8 cm. PTR is a sector of a circle with centre P and Q is the midpoint of OS.

[Use π = 3.142]
Calculate
(a)TOQ, in radians,
(b) the length , in cm , of the arc TR ,
(c) the area, in cm2 ,of the shaded region.


Solution:
(a)
cosTOQ= 4 8 = 1 2  TOQ= 60 o =60× π 180 =1.047 radians

(b)


TPO= 30 o   =30× π 180   =0.5237 P T 2 = 8 2 + 8 2 2( 8 )( 8 )cos120 P T 2 =192 PT= 192 PT=13.86 cm Length of arc TR=13.86×0.5237   =7.258 cm

(c)
Area of sector PTR = 1 2 × 13.86 2 ×0.5237 =50.30  cm 2 Length TQ = P T 2 P Q 2 = 13.86 2 12 2 =6.935 cm Area of  PTQ = 1 2 ×12×6.935 =41.61  cm 2 Area of shaded region =50.3041.61 =8.69  cm 2



Question 8:
Diagram below shows a circle PQT with centre O and radius 7 cm.

QS
is a tangent to the circle at point Q and QSR is a quadrant of a circle with centre Q. Q is the midpoint of OR and QP is a chord. OQR and SOP are straight lines.
[Use π = 3.142]
Calculate
(a) angle θ, in radians,
(b) the perimeter, in cm ,of the shaded region,
(c) the area, in cm2 ,of the shaded region.


Solution:
(a)
OQ=QR=QS=7 cm tanθ=1  θ= 45 o    = 45 o × π 180 o    =0.7855 rad

(b)
Length of arc RS =7×( 0.7855×2 ) π rad= 180 o 45 o =0.7855 rad 90 o =0.7855 ×2 rad =7×1.571 =10.997 cm Length of arc QP =7×( 0.7855×3 ) =7×2.3565 =16.496 cm Length of chord QP = 7 2 + 7 2 2( 7 )( 7 )cos 135 o refer form 4 chapter 10 ( solution of triangle )for cosine rule = 167.30 =12.934 cm Perimeter of the shaded region =7+7+10.997+16.496+12.934 =54.427 cm

(c)
Area of shaded region =( 1 2 × 7 2 ×1.571 )+( 1 2 × 7 2 ×2.3565 ) ( 1 2 ×7×7×sin 135 o ) refer form 4 chapter 10 ( solution of triangle )for area rule =38.4895+57.734317.3241 =78.8997  cm 2


Question 9:
In diagram 5, AOBDE, is a semicircle with centre O and has radius of 5cm. ABC is a right angle triangle.


It is given that AD DC =3.85 and DC=2.31 cm.  
[Use π = 3.142]
Calculate
(a) the value of θ, in radians,   [2 marks]
(b) the perimeter, in cm, of the segment ADE,    [3 marks]
(c) the area, in cm2, of the shaded region BCDF.   [5 marks]


Solution:
(a)
Given  AD DC =3.85 and DC=2.31 cm AD=3.85×2.31=8.8935 AC=8.8935+2.31=11.2035 cm cosθ= AB AC = 10 11.2035 θ= 26.80 o θ= 26.80 o × π 180 o =0.4678 rad

(b)
∠AOD = 3.142 – (0.4678 × 2)
= 2.206 rad
Length of arc AED = 5 × 2.206
= 11.03 cm
Therefore, perimeter of the segment ADE
= 11.03 + 8.8935
= 19.924 cm

(c)
BC = √ AC2AB2
  = √11.20352 – 102
  = 5.052 cm

2.206 rad× 180 o π = 126.38 o BOD=3.1422.206=0.936 rad Area of shaded region BCDF =Area of  ABCArea of  AODArea of segment OBD = 1 2 ( 10 )( 5.052 ) 1 2 ( 5 )( 5 )( sin126.38 ) 1 2 ( 5 ) 2 ( 0.936 ) =25.2610.0611.7 =3.50  cm 2



Question 10 (SPM 2017 - 8 marks):
Diagram 1 shows a circle and a sector of a circle with a common centre O. The radius of the circle is r cm.

It is given that the length of arc PQ and arc RS are 2 cm and 7 cm respectively. QR = 10 cm.
[Use θ = 3.142]
Find
(a) the value of r and of θ,
(b) the area, in cm2, of the shaded region.



Solution
:

(a)
Length of arc PQ=2 cm rθ=2 ................. ( 1 ) Length of arc RS=7 cm ( r+10 )θ=7 rθ+10θ=7 ................. ( 2 ) Substitute ( 1 ) into ( 2 ): 2+10θ=7 10θ=5 θ= 5 10 θ=0.5 rad From( 1 ): When θ=0.5 rad, r×0.5=2 r=4

(b)
OS=OR=4+10=14 cm Area of shaded region =area of ΔORS  area of sector OPQ =( 1 2 × 14 2 ×sin0.5 rad )( 1 2 × 4 2 ×0.5 ) =42.981  cm 2


Leave a Comment