Processing math: 100%
\

SPM 2021 Add Maths Trial Paper (Selangor) – Paper 1 (Question 10)


Question 10:
(a) Given the gradient of the tangent to the curve y = x2 (3 + px) is -3 when x = -1.
Find the value of p. [2 marks]

(b) Volume, V cm3, of a solid is given by V=8πr2+23πr3 , r is the radius. Find the approximate change in V, in terms of π, if r increases from 3 cm to 3.005 cm. [3 marks]


Solution:
(a)

Given dydx=3, x=1y=x2(3+px)dydx=x2(p)+(3+px)(2x)3=px2+6x+2px23=p(1)2+6(1)+2p(1)23=p6+2p3=3p63p=3p=1


(b)

Given δr=3.0053=0.005V=8πr2+23πr3δVδr=dVdrδV=dVdr×δrδV=[2(8)πr+3(23)πr2]×0.005 =(16πr+2πr2)×0.005 =[16π(3)+2π(3)2]×0.005 =66π×0.005 =0.33π


Leave a Comment