Question 10:
(a) Given the gradient of the tangent to the curve y = x2 (3 + px) is -3 when x = -1.
Find the value of p. [2 marks]
(b) Volume, V cm3, of a solid is given by V=8πr2+23πr3 , r is the radius. Find the approximate change in V, in terms of π, if r increases from 3 cm to 3.005 cm. [3 marks]
Solution:
(a)
Given dydx=−3, x=−1y=x2(3+px)dydx=x2(p)+(3+px)(2x)−3=px2+6x+2px2−3=p(−1)2+6(−1)+2p(−1)2−3=p−6+2p−3=3p−63p=3p=1
(b)
Given δr=3.005−3=0.005V=8πr2+23πr3δVδr=dVdrδV=dVdr×δrδV=[2(8)πr+3(23)πr2]×0.005 =(16πr+2πr2)×0.005 =[16π(3)+2π(3)2]×0.005 =66π×0.005 =0.33π
(a) Given the gradient of the tangent to the curve y = x2 (3 + px) is -3 when x = -1.
Find the value of p. [2 marks]
(b) Volume, V cm3, of a solid is given by V=8πr2+23πr3 , r is the radius. Find the approximate change in V, in terms of π, if r increases from 3 cm to 3.005 cm. [3 marks]
Solution:
(a)
Given dydx=−3, x=−1y=x2(3+px)dydx=x2(p)+(3+px)(2x)−3=px2+6x+2px2−3=p(−1)2+6(−1)+2p(−1)2−3=p−6+2p−3=3p−63p=3p=1
(b)
Given δr=3.005−3=0.005V=8πr2+23πr3δVδr=dVdrδV=dVdr×δrδV=[2(8)πr+3(23)πr2]×0.005 =(16πr+2πr2)×0.005 =[16π(3)+2π(3)2]×0.005 =66π×0.005 =0.33π