Loading [MathJax]/jax/output/CommonHTML/jax.js
\

SPM Additional Mathematics 2018, Paper 1 (Question 8 – 10)


Question 8 (3 marks):
Diagram 3 shows vectors OP, OQ and OM drawn on a square grid.

Diagram 3

(a) Express OM in the form hp˜+kq˜where h and k are constants.(b) On the diagram 3, mark and label the point N such that MN+OQ=2OP.


Solution:
(a)
OM=p˜+2q˜

(b)

MN+OQ=2OPMN=2OPOQ   =2p˜q˜


Question 9 (4 marks):
A(2, 3) and B(2, 5) lie on a Cartesian plane.It is given that 3OA=2OB+OC.Find(a) the coordinates of C,(b) |AC|

Solution:
Given A(2,3) and B(2,5)Thus, OA=2i˜+3j˜ and OB=2i˜+5j˜

(a)

3OA=2OB+OCOC=3OA2OB =3(2i˜+3j˜)2(2i˜+5j˜) =6i˜+9j˜+4i˜10j˜ =10i˜j˜Thus, coordinate of C is (10, 1)


(b)
AC=AO+OC =OA+OC =(2i˜+3j˜)+10i˜j˜ =2i˜+10i˜3j˜j˜ =8i˜4j˜|AC|=82+(4)2   =80 units   =16×5 units   =45 units


Question 10 (3 marks):
The following information refers to the equation of two straight lines, AB and CD.

   AB:y2kx3=0  CD:x3h+y4=1where h and k are constants.

Given the straight lines AB and CD are perpendicular to each other, express h in terms of k.

Solution:
AB:y2kx3=0y=2kx+3mAB=2kCD:x3h+y4=1mCD=43hmAB×mCD=12k×(43h)=18k=3hh=83k

Leave a Comment