Loading [MathJax]/jax/output/CommonHTML/jax.js
\

SPM Additional Mathematics 2017, Paper 1 (Question 4 – 7)


Question 4 (3 marks):
Diagram 4 shows a trapezium ABCD.

Diagram 4

Given p˜=(34) and q˜=(k1  2)where k is a constant, find value of k.


Solution:

p˜=mq˜(34)=m(k1  2)(34)=(mkm   2m)mkm=3 ………. (1)2m=4 ……………. (2)From(2):2m=4m=2Substitute m=2 into (1):2k2=32k=3+22k=5k=52


Question 5 (3 marks):
Given 25h+3125p1=1, express p in terms of h.

Solution:
25h+3125p1=125h+3=125p1(52)h+3=(53)p152h+6=53p32h+6=3p33p=2h+9p=2h+93


Question 6 (3 marks):
Solve the equation:logm324logm2m=2

Solution:
logm324logm2m=2logm324logm2mlogmm12=2logm3242(logm2mlogmm)=2logm3242logm2m=2logm324logm(2m)2=logmm2logm(3244m2)=logmm23244m2=m24m4=324m4=81m=±3(3 is rejected)


Question 7 (2 marks):
It is given that the nth term of a geometric progression is Tn=3rn12, rk.  
State
(a) the value of k,
(b) the first term of progression.

Solution:
(a)
k = 0, k = 1 or k = -1 (Any one of these answer).

(b)
Tn=32rn1T1=32r11  =32r0  =32(1)  =32


Leave a Comment