6.5 Formulae of sin (A±B), cos (A±B), tan (A±B), sin 2A, cos 2A, tan 2A

6.5 Formulae of sin (A ± B), cos (A ± B), tan (A ± B), sin 2A, cos 2A, tan 2A

(A) Compound Angles Formulae:
sin ( A ± B ) = sin A cos B ± cos A sin B cos ( A ± B ) = cos A cos B sin A sin B tan ( A ± B ) = tan A ± tan B 1 tan A tan B


(B) Double Angle Formulae:

  • sin 2A = 2 sin A cos A
  • cos 2A = cos2 A – sin2 A
  • cos 2A = 2 cos2 A – 1
  • cos 2A = 1 – 2 sin2 A
  • tan 2 A = 2 tan A 1 tan 2 A   

(C) Half Angle Formulae:
   sinA=2sin A 2 cos A 2    cosA= sin 2 A 2 cos 2 A 2      cosA=2 cos 2 A 2 1   cosA=12 cos 2 A 2    tanA= 2tan A 2 1 tan 2 A 2


5.5.1 Proving Trigonometric Identities using Addition Formula and Double Angle Formulae

Example 1:
Prove each of the following trigonometric identities.
(a)  sin( A+B )sin( AB ) cosAcosB =2tanB (b)  cos( A+B ) sinAcosB =cotAtanB (c) tan( A+ 45 o )= sinA+cosA cosAsinA

Solution:
(a)
LHS = sin( A+B )sin( AB ) cosAcosB = ( sinAcosB+cosAsinB )( sinAcosBcosAsinB ) cosAcosB = 2 cosA sinB cosA cosB = 2sinB cosB =2tanB=RHS (proven)



(b)
L H S = cos ( A + B ) sin A cos B = cos A cos B sin A sin B sin A cos B = cos A cos B sin A cos B sin A sin B sin A cos B = cos A sin A sin B cos B = cot A tan B = R H S (proven)  


(c)
L H S = tan ( A + 45 o ) = t a n A + tan 45 o 1 t a n A tan 45 o = t a n A + 1 1 t a n A tan 45 o = 1 = sin A cos A + 1 1 sin A cos A = sin A + cos A cos A × cos A cos A sin A = sin A + cos A cos A sin A = R H S (proven)

Leave a Comment