\

6.5.1 Proving Trigonometric Identities Using Addition Formula and Double Angle Formulae (Examples)


Example 2:
Prove each of the following trigonometric identities.
(a)1+cos2xsin2x=cotx(b)cotAsec2A=cotA+tan2A(c)sinx1cosx=cotx2

Solution:
(a)
LHS=1+cos2xsin2x=1+(2cos2x1)2sinxcosx=2cos2x2sinxcosx=cosxsinx=cotx=RHS(proven)



(b)
RHS=cotA+tan2A=cosAsinA+sin2Acos2A=cosAcos2A+sinAsin2AsinAcos2A=cosA(cos2Asin2A)+sinA(2sinAcosA)sinAcos2A=cos3AcosAsin2A+2sin2AcosAsinAcos2A=cos3A+cosAsin2AsinAcos2A=cosA(cos2A+sin2A)sinAcos2A=cosAsinAcos2Asin2A+cos2A=1=(cosAsinA)(1cos2A)=cotAsec2A


(c)
LHS=sinx1cosx=2sinx2cosx21(12sin2x2)sinx=2sinx2cosx2,cosx=12sin2x2=2sinx2cosx22sin2x2=cosx2sinx2=cotx2=RHS(proven)


Example 3:
(a) Given that sinP=35 and sinQ=513,  such that P is an acute angle and Q is an obtuse angle, without using tables or a calculator, find the value of cos (P + Q).

(b) Given that sinA=35 and sinB=1213,  such that A and B are angles in the third and fourth quadrants respectively, without using tables or a calculator, find the value of sin (A 
 B).

Solution:
(a)
sinP=35,cosP=45sinQ=513,cosQ=1213cos(P+Q)=cosAcosBsinAsinB=(45)(1213)(35)(513)=48651565=6365



(b)


sinA=35,cosA=45sinB=513,cosB=1213sin(AB)=sinAcosBcosAsinB=(35)(1213)(45)(513)=36652065=5665

Leave a Comment