\

5.4.4 Probability Distributions, Long Questions


Question 10:
(a) It is found that 60% of the students from a certain class obtained grade A in English in O level trial examination.
If 10 students from the class are selected at random, find the probability that
(i) exactly 7 students obtained grade A.
(ii) not more than 7 students obtained grade A.

(b) Diagram below shows a standard normal distribution graph representing the volume of soy sauce in bottles produced by a factory.

It is given the mean is 950 cm3 and the variance is 256 cm6. If the percentage of the volume more than V is 30.5%, find
(i) the value of V,
(ii) the probability that the volume between 930 cm3 and 960 cm3.

Solution:
(a)(i) P(X=r)= c n r . p r . q nr P(X=7)= C 10 7 ( 0.6 ) 7 ( 0.4 ) 3    =0.0860 ( ii ) P(X7) =1P(X>7) =1P( X=8 )P( X=9 )P( X=10 ) =1 C 10 8 ( 0.6 ) 8 ( 0.4 ) 2 C 10 9 ( 0.6 ) 9 ( 0.4 ) 1 C 10 10 ( 0.6 ) 10 ( 0.4 ) 0 =10.12090.04030.0060 =0.8328


(b)( i ) P( X>V )=30.5% P( Z> V950 16 )=0.305 P( Z>0.51 )=0.305    V950 16 =0.51 V=0.51( 16 )+950    =958.16  cm 3

( ii ) Probability =P( 930<X<960 ) =P( 930950 16 <Z< 960950 16 ) =P( 1.25<Z<0.625 ) =1P( Z>1.25 )P( Z>0.625 ) =10.10560.2660 =0.6284


Question 11:
(a) 20% of the students in SMK Bukit Bintang are cycling to school. If 9 pupils from the school are chosen at random, calculate the probability that
(i) exactly 3 of them are cycling to school,
(ii) at least a student is cycling to school. [4 marks]

(b) The volume of 800 bottles of fresh milk produced by a factory follows a normal distribution with a mean of 520 ml per bottle and variance of 1600 ml2.
(i) Find the probability that a bottle of fresh milk chosen in random has a volume of less than 515 ml.
(ii) If 480 bottles out of 800 bottles of the fresh milk have volume greater that k ml, find the value of k[6 marks]


Solution:
(a)(i)
X~ Students in SMK Bukit Bintang who are cycling to school
X~ B (n, p)
X~ B (9, 0.2)
P (X = r) = nCr. pr. qn-r
Probability, exactly 3 students are cycling to school
(X = 3) = 9C3(0.2)3 (0.8)6
= 0.1761

(a)(ii)
At least a student is cycling to school
= 1 – (X = 0)
= 1 – 9C0 (0.2)0(0.8)9
= 0.8658

(b)(i)
m = 520 ml
σ= 1600 ml2
σ = 40
Let X represents volume of a bottle of fresh milk.
X ~ N (520, 1600)

(X < 515)
=P( Z< 515520 40 )
= (Z< – 0.125)
= (Z> 0.125)
= 0.4502

(b)(ii)
P( X>k )= 480 800 P( Z> k520 40 )=0.6 k520 40 =0.253 k520=10.12 k=509.88


Leave a Comment