Processing math: 100%
\

2.6 Gradients of Tangents, Equations of Tangents and Normals

2.6 Gradients of Tangents, Equations of Tangents and Normals



If A(x1, y1) is a point on a line y = f(x), the gradient of the line (for a straight line) or the gradient of the tangent of the line (for a curve) is the value of dydx when x = x1.

(A) Gradient of tangent at A(x1, y1):




(B) Equation of tangent:




(C) Gradient of normal at A(x1, y1):






(D) Equation of normal :  




Example 1 (Find the Equation of Tangent)
Given that y=4(3x1)2 . Find the equation of the tangent at the point (1, 1).

Solution:
y=4(3x1)2=4(3x1)2dydx=2.4(3x1)3.3dydx=24(3x1)3At point (1, 1), dydx=24[3(1)1]3=248=3Equation of tangent at point (1, 1) is,y1=3(x1)y1=3x+3y=3x+4


Example 2 (Find the Equation of Normal)
Find the gradient of the curve y=73x+4 at the point (-1, 7). Hence, find the equation of the normal to the curve at this point.

Solution:
y=73x+4=7(3x+4)1dydx=7(3x+4)2.3dydx=21(3x+4)2At point (1, 7), dydx=21[3(1)+4]2=21Gradient of the normal =121Equation of the normal isyy1=m(xx1)y7=121(x(1))21y147=x+121yx148=0

Leave a Comment