Processing math: 100%
\

8.7.1 Vectors, Long Questions (Question 1 & 2)


Question 1:
The above diagram shows triangle OAB. The straight line AP intersects the straight line OQ at R. It is given that OP=14OB, AQ=14AB, OP=4b˜ and OA=8a˜.  

(a) Express in terms of   a˜ and/ or b˜:
(i)AP(ii)OQ

(b)(i) Given that AR=hAP , state   AR  in terms of h   a˜ and b˜.
 (ii) Given that   RQ=kOQ, state  in terms of k,   a˜ and b˜.

(c) Using   AQ=AR+RQ, find the value of h and of k.


Solution
:

(a)(i)
AP=AO+OPAP=OA+OPAP=8a˜+4b˜


(a)(ii)
OQ=OA+AQOQ=8a˜+14ABOQ=8a˜+14(AO+OB)OQ=8a˜+14(8a˜+4OP)OQ=8a˜+14(8a˜+4(4b˜))OQ=8a˜2a˜+4b˜OQ=6a˜+4b˜


(b)(i)
AR=hAPAR=h(8a˜+4b˜)AR=8ha˜+4hb˜



(b)(ii)
RQ=kOQRQ=k(6a˜+4b˜)RQ=6ka˜+4kb˜


(c)
AQ=AR+RQAQ=8ha˜+4hb˜+(6ka˜+4kb˜)AO+OQ=8ha˜+4hb˜+6ka˜+4kb˜8a˜+6a˜+4b˜=8ha˜+6ka˜+4hb˜+4kb˜2a˜+4b˜=8ha˜+6ka˜+4hb˜+4kb˜2=8h+6k1=4h+3k(1)4=4h+4k1=h+kk=1h(2)Substitute (2) into (1),1=4h+3(1h)1=4h+33h4=7hh=47From (2),k=147=37


Question 2:
Given that   AB=(1014),OB=(46) and CD=(m7) , find
(a) the coordinates of A,
(b) the unit vector in the direction of OA .
(c) the value of m if CD is parallel to AB .

Solution:

(a)
AB=AO+OB(1014)=(xy)+(46)(xy)=(1014)(46)AO=(68)OA=(68)A=(6,8)



(b)
|OA|=(6)2+(8)2|OA|=100=10the unit vector in the direction of OA=OA|OA|=(68)10=110(68)=(3545)


(c)
Given CD parallel AB CD=kAB(m7)=k(1014)(m7)=(10k14k)7=14kk=12m=10k=10(12)=5

Leave a Comment