Processing math: 100%
\

7.8.1 Coordinate Geometry Long Questions (Question 1 & 2)


Question 1:

The diagram shows a straight line PQ which meets a straight line RS at the point Q. The point P lies on the y-axis.
(a) Write down the equation of RS in the intercept form.
(b) Given that 2RQ = QS, find the coordinates of Q.
(c) Given that PQ is perpendicular to RS, find the y-intercept of PQ.




Solution:
(a) 
Equation of RS
x12+y6=1x12y6=1

(b)
Given 2RQ=QSRQQS=12Lets coordinates of Q=(x, y)((0)(2)+(12)(1)1+2,(6)(2)+(0)(1)1+2)=(x, y)x=123=4y=123=4Q=(4,4)


(c) 
Gradient of RS, mRS=(612)=12mPQ=1mRS=112=2
Point Q = (4, –4), m = –2
Using y = mx+ c
–4 = –2 (4) + c
c = 4
y–intercept of PQ = 4


Question 2:


The diagram shows a trapezium PQRS. Given the equation of PQ is 2y x – 5 = 0, find
(a) The value of w,
(b) the equation of PS and hence find the coordinates of P.
(c) The locus of M such that triangle QMS is always perpendicular at M.



Solution:
(a)
Equation of PQ2yx5=02y=x+5y=12x+52mPQ=12In a trapizium, mPQ=mSR12=0(3)w4w4=6w=10

(b)
mPQ=12mPS=1mPQ=112=2

Point S = (4, –3), m = –2
yy1 = m (xx1)
y – (–3) = –2 (x – 4)
y + 3 = –2x + 8
y = –2x + 5
Equation of PS is y = –2x + 5

PS is y = –2x + 5—–(1)
PQ is 2y = x + 5—–(2)
Substitute (1) into (2)
2 (–2x + 5) = x + 5
–4x + 10 = x + 5
–5x = –5
x = 1
From (1), y = –2(1) + 5
y = 3
Coordinates of point P = (1, 3).


(c)
Let M=(x,y)Given that QMS is perpendicular at MThus QMS=90(mQM)(mMS)=1(y5x5)(y(3)x4)=1(y5)(y+3)=1(x5)(x4)y2+3y5y15=1(x24x5x+20)y22y15=x2+9x20x2+y29x2y+5=0

Hence, the equation of locus of the moving point M is
x2 + y2– 9x – 2y + 5 = 0.

1 thought on “7.8.1 Coordinate Geometry Long Questions (Question 1 & 2)”

Leave a Comment