\

5.4.4 Sum to Infinity of Geometric Progressions

5.4.4 Sum to Infinity of Geometric Progressions

(G) Sum to Infinity of Geometric Progressions

S=a1r,1<r<1

a = first term
r = common ratio
S∞ = sum to infinity

Example:
Find the sum to infinity of each of the following geometric progressions.
(a) 8, 4, 2, …
(b) 23,29,227,…..   
(c) 3, 1, , ….

Solution:
(a)
8, 4, 2, ….
a = 2, r = 4/8 = ½
S∞ = 8 + 4 + 2 + 0.5 + 0.25 + 0.125 + 0.0625 + 0.03125 + …..
S=a1r=2112=4

(b)
23,29,227,.....a=23,r=2/92/3=13S=a1rS=23113=1

(c)
3,1,13,.....a=3,r=13S=a1rS=3113=32/3=92

(H) Recurring Decimal
Example of recurring decimal:
29=0.2222222222222.....833=0.242424242424.....41333=0.123123123123.....

Recurring decimal can be changed to fraction using the sum to infinity formula:
S=a1r

Example (Change recurring decimal to fraction)
Express each of the following recurring decimals as a fraction in its lowest terms.
(a) 0.8888 ...
(b) 0.171717...
(c) 0.513513513 ….


Solution:
(a)
0.8888 = 0.8 + 0.08 + 0.008 +0.0008 + ….. (recurring decimal)
GP,a=0.8,r=0.080.8=0.1S=a1rS=0.810.1S=0.80.9S=89check using calculator89=0.888888....

(b)

0.17171717 …..
= 0.17 + 0.0017 + 0.000017 + 0.00000017 + …..
GP,a=0.17,r=0.00170.17=0.01S=a1rS=0.1710.01=0.170.99=1799remember to check theanswer using calculator

(c)
0.513513513…..
= 0.513 + 0.000513 + 0.000000513 + …..
GP,a=0.513,r=0.005130.513=0.001S=a1rS=0.51310.001=0.5130.999=513999=1937

1 thought on “5.4.4 Sum to Infinity of Geometric Progressions”

Leave a Comment