\

1.7.1 Function, SPM Practice (Paper 2 Questions 1 – 5)


Question 1:
The function f and g is defined by
f:x2x3 g:x 2 x ;x0
Find the expression for each of the following functions
(a) ff,
(b) gf,
(c) f-1 ,
Calculate the value of x such that ff(x) = gf(x).

Solution:
(a)
ff( x )=f[ f( x ) ]  =f( 2x3 )  =2( 2x3 )3  =4x9 ff:x4x9

(b)
gf( x )=g[ f( x ) ]   =g( 2x3 )   = 2 2x3 gf:x 2 2x3

(c)
Let  f 1 ( x )=y, thus  f( y )=x   2y3=x   y= x+3 2    f 1 ( x )= x+3 2 f 1 :x x+3 2 When ff( x )=gf( x ), 4x9= 2 2x3 ( 4x9 )( 2x3 )=2 8 x 2 30x+27=2 8 x 2 30x+25=0 ( 4x5 )( 2x5 )=0 4x5=0    or    2x5=0 x= 5 4  or   x= 5 2

Question 2:
The function f and g is defined by
f( x )=3x2 g( x )= 3 x ,x0 Find (a)  f 1 ( 2 ), (b) gf( 3 ), (c) function h if hf( x )=3x+2, (d) function k if fk( x )=4x7.

Solution:
(a)
Let  f 1 ( 2 )=x, thus  f( x )=2   3x2=2    3x=4  x= 4 3 f 1 ( 2 )= 4 3

(b)
gf( 3 )=g[ 3( 3 )2 ]    =g( 11 )    = 3 11

(c)
h[ f( x ) ]=3x+2 h( 3x2 )=3x+2 Let y=3x2 thus  x= y+2 3  h( y )=3( y+2 3 )+2 =y+2+2 =y+4  h( x )=x+4

(d)
f[ k( x ) ]=4x7 3k( x )2=4x7 3k( x )=4x5 k( x )= 4x5 3

Question 3:
In diagram below, the function g maps set P to set Q and the function h maps set Q to set R.



Find
(a) in terms of x, the function
(i) which maps set Q to set P,
(ii) h(x).
(b) the value of x such that gh(x) = 8x + 1.



Solution:
(a)(i)
g( x )=3x+2 Let  g 1 ( x )=y g( y )=x 3y+2=x y= x2 3 g 1 ( x )= x2 3

(a)(ii)
hg( x )=12x+5 h( 3x+2 )=12x+5 g( x )=3x+2 Let u=3x+2    x= u2 3 h( u )=12( u2 3 )+5    =4u8+5    =4u3 h( x )=4x3

(b)
gh( x )=g( 4x3 )  =3( 4x3 )+2  =12x9+2  =12x7 12x7=8x+1    4x=8  x=2


Question 4:
Given that f:x 5x mx3 ,x 3 2  and g:x34x. Find
(a) the value of m, [2 marks]
(b)   gf-1(–2), [3 marks]
(c) function h if hg (x) = 12x + 5 [3 marks]

Solution:
(a)
mx3=0 m( 3 2 )3=0 m=3× 2 3 =2

(b)
Let y= 5x 2x3 2xy3y=5x 2xy5x=3y x( 2y5 )=3y  x= 3y 2y5 f 1 ( y )= 3y 2y5 f 1 ( x )= 3x 2x5 f 1 ( 2 )= 3( 2 ) 2( 2 )5 = 2 3

g f 1 ( 2 )=g( 2 3 ) =34( 2 3 ) = 1 3

(c)
hg (x) = 12x + 5
h [g(x)] = 12x + 5
(3 – 4x) = 12x + 5
Let u = 3 – 4x
x= 3u 4 h( u )=12( 3u 4 )+5 h( u )=93u+5 h( u )=143u h( x )=143x


Question 5:
Given that f : xhx + k and f2 : x → 4x + 15.  
(a) Find the value of h and of k.
(b) Take the value of h > 0, find the values of x for which f (x2 ) = 7x

Solution:
(a)
Given f (x) = hx + k
f2 (x) = ff (x) = f (hx + k)
= h (hx + k) + k
= h2 x + hk + k

f2 (x) = 4x + 15
h2 x + hk + k = 4x + 15
h2 = 4
h = ± 2
when, h = 2
hk + k = 15
2k + k = 15
k = 5

When, h = –2
hk + k = 15
–2k + k = 15
k = –15

(b)
h > 0, h = 2, k = 5
Given f (x) = hx + k
f (x) = 2x + 5 f (x2 ) = 7x
2 (x2 ) + 5 = 7x
2x2 – 7x + 5 = 0
(2x – 5)(x –1) = 0
2x – 5 = 0 or x –1= 0
x = 5/2 x = 1

Leave a Comment