\

1.6.2 Function, SPM Practice (Paper 1 Question 11 – 20)


Question 11 (SPM 2017 – 3 marks):
Diagram 5 shows the graph of the function f : x → |1 – 2x| for the domain –2 ≤ x ≤ 4.

Diagram 5

State
(a) the object of 7,
(b) the image of 3,
(c) the domain of 0 ≤ f(x) ≤ 5.


Solution:
(a)
The object of 7 is 4.

(b)
f (x) = |1 – 2x|
f (3) = |1 – 2(3)|
= |1 – 6|
= |–5|
= 5

The image of 3 is 5.

(c)
|1 – 2x| = 5
1 – 2x = ±5
Given when f(x) = 5, x = –2.

When f(x) = –5
1 – 2x = –5
2x = 6
x = 3

Domain: –2 ≤ x ≤ 3.



Question 12 (SPM 2017 – 4 marks):
Given the function g : x → 2x – 8, find
( a )  g 1 ( x ), ( b ) the value of p such that  g 2 ( 3p 2 )=30.

Solution:
(a)
Let y=g( x ) =2x8 2x8=y  2x=y+8    x= y+8 2 Thus,  g 1 ( x )= x+8 2

(b)
g( x )=2x8 g 2 ( x )=g[ g( x ) ]  =g( 2x8 )  =2( 2x8 )8  =4x168  =4x24 g 2 ( 3p 2 )=30 4( 3p 2 )24=30 6p=54 p=9


Question 13 (SPM 2018 – 4 marks):
Diagram 9 shows the relation between set A, set B and set C.

Diagram 9

It is given that set A maps to set B by the function x+1 2 and maps to set C by fg : xx2 + 2x + 4.
(a) Write the function which maps set A to set B by using the function notation.
(b) Find the function which maps set B to set C.


Solution:

(a)
g:x x+1 2

(b)

g( x )= x+1 2 fg( x )= x 2 +2x+4 f[ g( x ) ]= x 2 +2x+4 f( x+1 2 )= x 2 +2x+4 Let  x+1 2 =y x+1=2y x=2y1 f( y )= ( 2y1 ) 2 +2( 2y1 )+4 f( y )=4 y 2 4y+1+4y2+4 f( y )=4 y 2 +3 f( x )=4 x 2 +3 Thus, function which maps set B to set C is f( x )=4 x 2 +3


Question 14:
The function f is denoted by f:x 1+x 1x ,x1.  Find  f 2 , f 3 , f 4  and hence write down the functions  f 51  and  f 52 .

Solution:
f( x )= 1+x 1x ,x1 f 2 ( x )=f[ f( x ) ]=f( 1+x 1x )  = 1+( 1+x 1x ) 1( 1+x 1x ) = 1x+1+x 1x 1x1x 1x  = 2 2x = 1 x f 3 ( x )=f[ f 2 ( x ) ]=f( 1 x )  = 1+( 1 x ) 1( 1 x ) = x1 x x+1 x  = x1 x+1 f 4 ( x )=f[ f 3 ( x ) ]=f( x1 x+1 )   = 1+( x1 x+1 ) 1( x1 x+1 ) = x+1+x1 x+1 x+1x+1 x+1   = 2x 2 =x f 5 ( x )=f[ f 4 ( x ) ]=f( x )= 1+x 1x ( recurring ) f 51 ( x )= f 3 [ f 48 ( x ) ]= f 3 ( x )  = x1 x+1 f 52 ( x )= f 4 [ f 48 ( x ) ]= f 4 ( x )=x



Question 15 (SPM 2019):
Diagram 2 shows the relation of three sets. 


$$ \text { It is given that } f: x \rightarrow 2 x+3 \text { and } g^{-1} f: x \rightarrow \frac{3}{x}+1, x \neq 0 \text {. } $$
(a) If a student writes a = 10, determine whether the value is correct or wrong. Give your reason.
(b) Find g-1(x).
[4 marks]


Answer:
(a)
$$ \begin{aligned} &\begin{aligned} & f(x)=2 x+3 \\ & f(3)=2(3)+3=9 \\ & f(3)=a=9 \end{aligned}\\ &\text { The value of } a=10 \text { is wrong. } \end{aligned} $$


(b)
$$ \begin{aligned} & g^{-1} f(x)=\frac{3}{x}+1 \\ & g^{-1}(2 x+3)=\frac{3}{x}+1 \\ & \text { Let } 2 x+3=u \\ & 2 x=u-3 \\ & x=\frac{u-3}{2} \\ & g^{-1}(u)=\frac{\frac{3}{u-3}}{2}+1 \\ & =\frac{6}{u-3}+1 \\ & g^{-1}(x)=\frac{6}{x-3}+1, x \neq 3 \end{aligned} $$

Leave a Comment