2.6 Gradients of Tangents, Equations of Tangents and Normals


If A(x1, y1) is a point on a line y = f(x), the gradient of the line (for a straight line) or the gradient of the tangent of the line (for a curve) is the value of
dydx
when x = x1.
(A) Gradient of tangent at A(x1, y1):


(B) Equation of tangent:


(C) Gradient of normal at A(x1, y1):




(D) Equation of normal :


Example 1 (Find the Equation of Tangent)
Given that
y=4(3x−1)2
. Find the equation of the tangent at the point (1, 1).
Solution:
y=4(3x−1)2=4(3x−1)−2dydx=−2.4(3x−1)−3.3dydx=−24(3x−1)3At point (1, 1), dydx=−24[3(1)−1]3=−248=−3Equation of tangent at point (1, 1) is,y−1=−3(x−1)y−1=−3x+3y=−3x+4
Example 2 (Find the Equation of Normal)
Solution:
y=73x+4=7(3x+4)−1dydx=−7(3x+4)−2.3dydx=−21(3x+4)2At point (−1, 7), dydx=−21[3(−1)+4]2=−21Gradient of the normal =121Equation of the normal isy−y1=m(x−x1)y−7=121(x−(−1))21y−147=x+121y−x−148=0
Find the gradient of the curve
y=73x+4
at the point (-1, 7). Hence, find the equation of the normal to the curve at this point.
Solution:
y=73x+4=7(3x+4)−1dydx=−7(3x+4)−2.3dydx=−21(3x+4)2At point (−1, 7), dydx=−21[3(−1)+4]2=−21Gradient of the normal =121Equation of the normal isy−y1=m(x−x1)y−7=121(x−(−1))21y−147=x+121y−x−148=0