2.2 First Derivative for Polynomial Function

(A) Differentiating a Constant
(B) Differentiating Variable with Index n

(C) Differentiating a Linear Function

(D) Differentiating a Polynomial Function

(E) Differentiating Fractional Function

(F) Differentiating Square Root Function


(A) Differentiating a Constant

(B) Differentiating Variable with Index n

(C) Differentiating a Linear Function

(D) Differentiating a Polynomial Function

(E) Differentiating Fractional Function

(F) Differentiating Square Root Function

Example:
Find
dydx
for each of the following functions:
(a) y= 12
(b) y= x4
(c) y= 3x
(d) y= 5x3
(e) y=1x(f) y=2x4(g) y=25x2(h) y=3√x(i) y=4√x3
Solution:
(a)
y = 12
dydx=0
y = 12
dydx=0
(b)
y = x4
y = x4
dydx
= 4x3
(c)
y = 3x
dydx
= 3
y = 5x3
dydx
= 3(5x2) = 15x2
(e)
y=1x=x−1dydx=−x−1−1=−1x2
(f)
y=2x4=2x−4dydx=−4(2x−4−1)=−8x−5=−8x5
(g)
y=25x2=2x−25dydx=−2(2x−2−15)=−4x−35=−45x3
(h)
y=3√x=3(x)12dydx=12(3x12−1)=32x−12=32√x
(i)