Processing math: 100%
\

2.2 First Derivative for Polynomial Function

2.2 First Derivative for Polynomial Function



(A) Differentiating a Constant



(B) Differentiating Variable with Index n



(C) Differentiating a Linear Function




(D) Differentiating a Polynomial Function



(E) Differentiating Fractional Function



(F) Differentiating Square Root Function



Example:
Find dydx for each of the following functions:
(a) y= 12
(b) y= x4
(c) y= 3x
(d) y= 5x3
(e) y=1x(f) y=2x4(g) y=25x2(h) y=3x(i) y=4x3

Solution:
(a) 
= 12
  dydx=0
   
(b) 
= x4
  dydx = 4x3

(c) 
= 3x
  dydx = 3

(d) 
= 5x3
  dydx = 3(5x2) = 15x2


(e)

y=1x=x1dydx=x11=1x2

(f)

y=2x4=2x4dydx=4(2x41)=8x5=8x5

(g)

y=25x2=2x25dydx=2(2x215)=4x35=45x3

(h)

y=3x=3(x)12dydx=12(3x121)=32x12=32x

(i)
y=4x3=4(x3)12=4x32dydx=32(4x321)=6x12=6x

Leave a Comment