Processing math: 100%
\

3.4b Laws of Definite Integrals

3.4b Laws of Definite Integrals




Example:
Given that 73f(x)dx=5 , find the values for each of the following:

(a)736f(x)dx(b)73[3f(x)]dx(c)372f(x)dx(d)43f(x)dx+54f(x)dx+73f(x)dx(e)73f(x)+72dx


Solution:
(a)736f(x)dx=673f(x)dx=6(5)=30(b)73[3f(x)]dx=733dx73f(x)dx=[3x]735=[3(7)3(3)]5=7(c)372f(x)dx=732f(x)dx=273f(x)dx=2(5)=10(d)43f(x)dx+54f(x)dx+73f(x)dx=73f(x)dx=5(e)73f(x)+72dx=73[12f(x)+72]dx=7312f(x)dx+7372dx=1273f(x)dx+[7x2]73=12(5)+[7(7)27(3)2]=52+14=1612


1 thought on “3.4b Laws of Definite Integrals”

Leave a Comment