Question 1 (5 marks):
Solve the following simultaneous equations:
x – 3y = 1,
x2 + 3xy + 9y2 = 7
Solution:
x−3y=1……………….(1)x2+3xy+9y2=7……………….(2)From (1):x=3y+1……………….(3)Substitute (3) into (2):(3y+1)2+3(3y+1)y+9y2=79y2+6y+1+9y2+3y+9y2−7=027y2+9y−6=09y2+3y−2=0(3y−1)(3y+2)=0y=13 or −23Substitute y into (3):When y=13x=3(13)+1=2When y=−23x=3(−23)+1=−1Hence, the solutions are x=2,y=13 or x=−1,y=−23.
Solve the following simultaneous equations:
x – 3y = 1,
x2 + 3xy + 9y2 = 7
Solution:
x−3y=1……………….(1)x2+3xy+9y2=7……………….(2)From (1):x=3y+1……………….(3)Substitute (3) into (2):(3y+1)2+3(3y+1)y+9y2=79y2+6y+1+9y2+3y+9y2−7=027y2+9y−6=09y2+3y−2=0(3y−1)(3y+2)=0y=13 or −23Substitute y into (3):When y=13x=3(13)+1=2When y=−23x=3(−23)+1=−1Hence, the solutions are x=2,y=13 or x=−1,y=−23.
Question 2 (7 marks):
It is given that the equation of a curve is y=5x2.
(a) Find the value of dydx when x = 3.
(b) Hence, estimate the value of 5(2.98)2.
Solution:
(a)
y=5x2=5x−2dydx=−10x−3=−10x3When x=3dydx=−1033=−1027
(b)
δx=2.98−3=−0.02δy=dydx.δx=−1027×(−0.02)=0.007407Values of 5(2.98)2=y+δy=5x2+(0.007407)=532+(0.007407)=0.56296
It is given that the equation of a curve is y=5x2.
(a) Find the value of dydx when x = 3.
(b) Hence, estimate the value of 5(2.98)2.
Solution:
(a)
y=5x2=5x−2dydx=−10x−3=−10x3When x=3dydx=−1033=−1027
(b)
δx=2.98−3=−0.02δy=dydx.δx=−1027×(−0.02)=0.007407Values of 5(2.98)2=y+δy=5x2+(0.007407)=532+(0.007407)=0.56296
Question 3 (8 marks):
Diagram 1 shows a circle and a sector of a circle with a common centre O. The radius of the circle is r cm.

It is given that the length of arc PQ and arc RS are 2 cm and 7 cm respectively. QR = 10 cm.
[Use θ = 3.142]
Find
(a) the value of r and of θ,
(b) the area, in cm2, of the shaded region.
Solution:
(a)
Length of arc PQ=2 cmrθ=2 …………….. (1)Length of arc RS=7 cm(r+10)θ=7rθ+10θ=7 …………….. (2)Substitute (1) into (2):2+10θ=710θ=5θ=510θ=0.5 radFrom(1):When θ=0.5 rad,r×0.5=2r=4
(b)
OS=OR=4+10=14 cmArea of shaded region=area of ΔORS − area of sector OPQ=(12×142×sin0.5 rad)−(12×42×0.5)=42.981 cm2
Diagram 1 shows a circle and a sector of a circle with a common centre O. The radius of the circle is r cm.

It is given that the length of arc PQ and arc RS are 2 cm and 7 cm respectively. QR = 10 cm.
[Use θ = 3.142]
Find
(a) the value of r and of θ,
(b) the area, in cm2, of the shaded region.
Solution:
(a)
Length of arc PQ=2 cmrθ=2 …………….. (1)Length of arc RS=7 cm(r+10)θ=7rθ+10θ=7 …………….. (2)Substitute (1) into (2):2+10θ=710θ=5θ=510θ=0.5 radFrom(1):When θ=0.5 rad,r×0.5=2r=4
(b)
OS=OR=4+10=14 cmArea of shaded region=area of ΔORS − area of sector OPQ=(12×142×sin0.5 rad)−(12×42×0.5)=42.981 cm2