Processing math: 100%
\

SPM Additional Mathematics 2017, Paper 2 (Question 1 – 3)


Question 1 (5 marks):
Solve the following simultaneous equations:
x – 3y = 1,
x2 + 3xy + 9y2 = 7


Solution:
x3y=1……………….(1)x2+3xy+9y2=7……………….(2)From (1):x=3y+1……………….(3)Substitute (3) into (2):(3y+1)2+3(3y+1)y+9y2=79y2+6y+1+9y2+3y+9y27=027y2+9y6=09y2+3y2=0(3y1)(3y+2)=0y=13 or 23Substitute y into (3):When y=13x=3(13)+1=2When y=23x=3(23)+1=1Hence, the solutions are x=2,y=13 or x=1,y=23.



Question 2 (7 marks):
It is given that the equation of a curve is y=5x2.  
(a) Find the value of dydx when x = 3.
(b) Hence, estimate the value of 5(2.98)2.  

Solution:
(a)
y=5x2=5x2dydx=10x3=10x3When x=3dydx=1033=1027


(b)
δx=2.983=0.02δy=dydx.δx=1027×(0.02)=0.007407Values of 5(2.98)2=y+δy=5x2+(0.007407)=532+(0.007407)=0.56296



Question 3 (8 marks):
Diagram 1 shows a circle and a sector of a circle with a common centre O. The radius of the circle is r cm.

It is given that the length of arc PQ and arc RS are 2 cm and 7 cm respectively. QR = 10 cm.
[Use θ = 3.142]
Find
(a) the value of r and of θ,
(b) the area, in cm2, of the shaded region.



Solution
:

(a)
Length of arc PQ=2 cmrθ=2 …………….. (1)Length of arc RS=7 cm(r+10)θ=7rθ+10θ=7 …………….. (2)Substitute (1) into (2):2+10θ=710θ=5θ=510θ=0.5 radFrom(1):When θ=0.5 rad,r×0.5=2r=4

(b)
OS=OR=4+10=14 cmArea of shaded region=area of ΔORS  area of sector OPQ=(12×142×sin0.5 rad)(12×42×0.5)=42.981 cm2


Leave a Comment