3.2 Integration by Substitution January 21, 2022March 23, 2021 by 3.2 Integration by Substitution It is given that ∫ ( a x + b ) n d x , n ≠ − 1. (A) Using the Substitution method, Let u=ax+b Thus, du dx =a ∴dx= du a Example 1: ∫ ( 3x+5 ) 3 dx. Let u=3x+5 du dx =3 dx= du 3 ∫ ( 3x+5 ) 3 dx = ∫ u 3 du 3 ← substitute 3x+5=u and dx= du 3 = 1 3 ∫ u 3 du = 1 3 ( u 4 4 )+c = 1 3 ( ( 3x+5 ) 4 4 )+c ← substitute back u=3x+5 = ( 3x+5 ) 4 12 +c (B) Using Formula method ∫ ( a x + b ) n = ( a x + b ) n + 1 ( n + 1 ) a + c Hence, ∫ ( 3 x + 5 ) 3 d x = ( 3 x + 5 ) 4 4 ( 3 ) + c = ( 3 x + 5 ) 4 12 + c Example 2 (Formula method): ∫ ( a x + b ) n = ( a x + b ) n + 1 ( n + 1 ) a + c Hence, ∫ ( 3 x + 5 ) 3 d x = ( 3 x + 5 ) 4 4 ( 3 ) + c = ( 3 x + 5 ) 4 12 + c