\

8.5 Vectors in Cartesian Plane


(A) Vectors in Cartesian Coordinates
1. A unit vector is a vector whose magnitude is one unit.
2. A unit vector that is parallel to the x-axis is denoted by  i˜i˜ while a unit vector that is parallel to the y-axis is denoted by j˜ .
3. The unit vector can be expressed in columnar form as below: OA=xi˜+yj˜=(xy)(Column Vector) 
4. The magnitudes of the unit vectors are  |i˜|=|j˜|=1.

5. The magnitude of the vector OA can be calculated using the Pythagoras’ Theorem.
|OA|=x2+y2
 
(B) Unit Vector in the Direction of a Vector
  Unit vector of a˜, ˆa˜=xi˜+yj˜x2+y2    

Example 1:
If   r˜=ki˜8j˜ and |r˜|=10 , find the values of k. Determine the unit vector in the direction of   r˜   for each value of k.   

Solution:
Given |r˜|=10x2+y2=10k2+(8)2=10k2+64=100k=±6Unit vector of  ˆr˜=xi˜+yj˜x2+y2When k=6,When k=6ˆr˜=6i˜8j˜10=3i˜4j˜5   ˆr˜=6i˜8j˜10=3i˜4j˜5ˆr˜=15(3i˜4j˜)  ˆr˜=15(3i˜4j˜)


Example 2:
It is given that a˜=(63) and b˜=(37).  
(a) Find b˜a˜ and |b˜a˜|.  
(b) Hence, find the unit vector in the direction of b˜a˜.

Solution:
(a)
b˜a˜=(37)(63)=(3673)=(34)|b˜a˜|=(3)2+42=9+16=25=5


(b)
The unit vector in the direction of b˜a˜=15(3 4)=(35 45)

Leave a Comment