Processing math: 100%
\

4.5.2 Indices and Logarithms, Short Questions (Question 5 – 7)


Question 5
Solve the equation,  log24x=1log4x

Solution:
log24x=1log4xlog24x=1log2xlog24log24x=1log2x22log24x=2log2xlog216x2=log24log2xlog216x2=log24x16x2=4xx3=416=14x=(14)13=0.62996



Question 6
Solve the equation,  log4x=25logx4

Solution:
log4x=25logx41logx4=25logx4125=(logx4)2logx4=±15logx4=15   or   logx4=154=x15   4=x15x=454=1x15x=1024 x15=14   x=11024


Question 7
Solve the equation,  2logx5+log5x=lg1000

Solution:
2logx5+log5x=lg10002.1log5x+log5x=3×(log5x)2+(log5x)2=3log5x(log5x)23log5x+2=0(log5x2)(log5x1)=0log5x=2  or  log5x=1x=52 x=5x=25

Leave a Comment