Processing math: 100%
\

4.5.4 Indices and Logarithms, Short Questions (Question 11 – 13)


Question 11
Given that 2 log2 (xy) = 3 + log2x + log2 y
Prove that x2 + y2– 10xy = 0.

Solution:
2 log2 (xy) = 3 + log2x + log2 y
log2 (xy)2 = log2 8 + log2 x + log2y
log2 (xy)2 = log2 8xy
(xy)2 = 8xy
x2– 2xy + y2 = 8xy
x2 + y2 – 10xy = 0 (proven)


Question 12
Solve the equation,  log25x+log416x=6

Solution:
log25x+log416x=6log25x+log216xlog24=6log25x+log216x2=62log25x+log216x=12log2(5x)2+log216x=12log2(25x)+log216x=12log2(25x)(16x)=12log2400x2=12400x2=212x2=10.24x=3.2



Question 13
Solve the equation, 2log52=log2(2x)

Solution:
2log52=log2(2x)2=log52.log2(2x)2=1log25.log2(2x)2log25=log2(2x)log252=log2(2x)25=2xx=23

Leave a Comment