Question 11
Given that 2 log2 (x – y) = 3 + log2x + log2 y.
Prove that x2 + y2– 10xy = 0.
Solution:
2 log2 (x – y) = 3 + log2x + log2 y
log2 (x– y)2 = log2 8 + log2 x + log2y
log2 (x– y)2 = log2 8xy
(x – y)2 = 8xy
x2– 2xy + y2 = 8xy
x2 + y2 – 10xy = 0 (proven)
Question 12
Solve the equation,
log25√x+log416x=6
Solution:
log25√x+log416x=6log25√x+log216xlog24=6log25√x+log216x2=62log25√x+log216x=12log2(5√x)2+log216x=12log2(25x)+log216x=12log2(25x)(16x)=12log2400x2=12400x2=212x2=10.24x=3.2
Question 13
Solve the equation,
2log52=log2(2−x)
Solution:
2log52=log2(2−x)2=log52.log2(2−x)2=1log25.log2(2−x)2log25=log2(2−x)log252=log2(2−x)25=2−xx=−23