Question 7:
Solve the following simultaneous equations.
5y – 6x= 2
4yx−3xy=4.4yx−3xy=4.
Solution:
5y – 6x= 2 —– (1)
4yx−3xy=4 ------- (2)From (1),y=2+6x54yx−3xy=4 ------- (2)From (1),y=2+6x5
Substitute (3) into (2),
4(2+6x5)x−3x(2+6x5)=48+24x5x−15x2+6x=4(8+24x)(2+6x)−(15x)(5x)5x(2+6x)=44(2+6x5)x−3x(2+6x5)=48+24x5x−15x2+6x=4(8+24x)(2+6x)−(15x)(5x)5x(2+6x)=4
16 + 48x + 48x + 144x2 – 75x2 = 20x (2 + 6x)
69x2 + 96x + 16 = 40x + 120x2
51x2 – 56x – 16 = 0
(3x – 4)(17x + 4) = 0
3x – 4 = 0 or 17x + 4 = 0
x=43 or x=−417x=43 or x=−417
Substitute x=43 into (3),y=2+6(43)5=2Substitute x=43 into (3),y=2+6(43)5=2
Substitute x=−417 into (3),y=2+6(−417)5=217Substitute x=−417 into (3),y=2+6(−417)5=217
∴The solutions are (43,2) and (−417,217).∴The solutions are (43,2) and (−417,217).
Question 8:
Solve the following simultaneous equations.
x+2y=12x2+y2+xy=5x+2y=12x2+y2+xy=5
Give your answer correct to three decimal places.
Solution:
x+2y=1..........(1)2x2+y2+xy=5..........(2)x=1−2y..........(3)Substitute (3) into (2),2(1−2y)2+y2+(1−2y)y=52(1−4y+4y2)+y2+y−2y2=52−8y+8y2−y2+y−5=07y2−7y−3=0a=7,b=−7,c=−3x=−b±√b2−4ac2ay=−(−7)±√(−7)2−4(7)(−3)2(7)y=7±√13314y=1.324 or −0.324From x=1−2yWhen y=1.324, x=1−2(1.324)=1.648When y=−0.324, x=1−2(−0.324)=1.648∴The solutions are (1.648,1.324) and (1.648,−0.324).x+2y=1..........(1)2x2+y2+xy=5..........(2)x=1−2y..........(3)Substitute (3) into (2),2(1−2y)2+y2+(1−2y)y=52(1−4y+4y2)+y2+y−2y2=52−8y+8y2−y2+y−5=07y2−7y−3=0a=7,b=−7,c=−3x=−b±√b2−4ac2ay=−(−7)±√(−7)2−4(7)(−3)2(7)y=7±√13314y=1.324 or −0.324From x=1−2yWhen y=1.324, x=1−2(1.324)=1.648When y=−0.324, x=1−2(−0.324)=1.648∴The solutions are (1.648,1.324) and (1.648,−0.324).
Solve the following simultaneous equations.
x+2y=12x2+y2+xy=5x+2y=12x2+y2+xy=5
Give your answer correct to three decimal places.
Solution:
x+2y=1..........(1)2x2+y2+xy=5..........(2)x=1−2y..........(3)Substitute (3) into (2),2(1−2y)2+y2+(1−2y)y=52(1−4y+4y2)+y2+y−2y2=52−8y+8y2−y2+y−5=07y2−7y−3=0a=7,b=−7,c=−3x=−b±√b2−4ac2ay=−(−7)±√(−7)2−4(7)(−3)2(7)y=7±√13314y=1.324 or −0.324From x=1−2yWhen y=1.324, x=1−2(1.324)=1.648When y=−0.324, x=1−2(−0.324)=1.648∴The solutions are (1.648,1.324) and (1.648,−0.324).x+2y=1..........(1)2x2+y2+xy=5..........(2)x=1−2y..........(3)Substitute (3) into (2),2(1−2y)2+y2+(1−2y)y=52(1−4y+4y2)+y2+y−2y2=52−8y+8y2−y2+y−5=07y2−7y−3=0a=7,b=−7,c=−3x=−b±√b2−4ac2ay=−(−7)±√(−7)2−4(7)(−3)2(7)y=7±√13314y=1.324 or −0.324From x=1−2yWhen y=1.324, x=1−2(1.324)=1.648When y=−0.324, x=1−2(−0.324)=1.648∴The solutions are (1.648,1.324) and (1.648,−0.324).