Processing math: 100%
\

2.12.7 Quadratic Functions, SPM Practice (Paper 1)


Question 20:
Find the range of values of k if the quadratic equation 3(x2kx – 1) = kk2 has two real and distinc roots.

Solution:
3(x2kx1)=kk23x23kx3k+k2=03x23kx+k2k3=0a=3,b=3k,c=k2k3In cases of two real and distinc roots,b24ac>0 is applied.(3k)24(3)(k2k3)>09k212k2+12k+36>03k2+12k+36>0k2+4k+12>0k24k12<0(k+2)(k6)<0k=2,6



The range of values of k is 2<k<6.

Question 21:
Given that the quadratic equation hx2 – (h + 2)x – (h – 4) = 0 has real and distinc roots.  Find the range of values of h.

Solution:
The quadratic equation hx2(h+2)x(h4)=0has real and distinc roots.b24ac>0 is applied.(h2)24(h)(h+4)>0h2+4h+4+4h216h>05h212h+4>0(5h2)(h2)>0The coefficient of h2 is positive, the region above the x-axis should be shaded.(5h2)(h2)=0h=25,2



The range of values of h for (5h2)(h2)>0 ish<25 or h>2.

Question 22:
The diagram below shows the graph of the quadratic function f(x) = (x + 3)2 + 2h – 6, where h is a constant.


(a) State the equation of the axis of symmetry of the curve.
(b) Given the minimum value of the function is 4, find the value of h.

Solution:
(a)
When x + 3 = 0
 x = –3
Therefore, equation of the axis of symmetry of the curve is x = –3.

(b)
When x + 3 = 0, f(x) = 2h – 6
Minimum value of f(x) is 2h – 6.
2h – 6 = 4
2h = 10
h = 5

Leave a Comment