Loading [MathJax]/jax/output/CommonHTML/jax.js
\

2.13.2 Quadratic Functions, SPM Practice (Paper 2)


Question 3:
If α and β are the roots of the quadratic equation 3x2 + 2x– 5 = 0, form the quadratic equations that have the following roots.
(a) 2α and 2β(b) (α+2β) and (β+2α)

Solution:
3x2 + 2x – 5 = 0
a = 3, b = 2, c = –5
The roots are α and β.
α+β=ba=23αβ=ca=53


(a)
The new roots are 2αand2β.Sum of new roots=2α+2β=2β+2ααβ=2(α+β)αβ=2(23)53=45

Product of new roots=(2α)(2β)=4αβ=453=125

Using the formula, x2– (sum of roots)x + product of roots = 0
The new quadratic equation is
x2(45)x+(125)=0
5x2 – 4x– 12 = 0



(b)
The new roots are (α+2β)and(β+2α).Sum of new roots=(α+2β)+(β+2α)
=α+β+(2α+2β)=α+β+2α+2βαβ=α+β+2(α+β)αβ=45+2(45)125=4523=215
Product of new roots=(α+2β)(β+2α)=αβ+2+2+4αβ
=125+4+4125=125+453=115

The new quadratic equation is
x2(215)x+(115)=0
15x2 – 2x– 1 = 0


Question 4:
It is given α and β are the roots of the quadratic equation x (x – 3) = 2k – 4, where k is a constant.
(a) Find the range of values of k if αβ.(b) Given α2 and β2 are the roots of another quadratic equation 2x2+tx4=0, where t is a constant, find the value of t and of k.

Solution:
(a)x(x3)=2k4x23x+42k=0a=1, b=3, c=42k   b24ac>0(3)24(1)(42k)>0   916+8k>08k>7  k>78

(b)From the equation x23x+42k=0,α+β=ba =31 =3………….(1)αβ=ca=42k1=42k………….(2)From the equation 2x2+tx4=0,α2+β2=t2α+β=t………….(3)α2×β2=42αβ=8………….(4)Substitute (1)=(3),3=tt=3Substitute (2)=(4),42k=84+8=2kk=6

Leave a Comment