\

1.6.2 Function, SPM Practice (Short Question)


Question 5:
It is given the functions g(x) = 3x and h(x) = mnx, where m and n are constants.
Express m in terms of n such that hg(1) = 4.

Solution:
hg(x)=h(3x) =mn(3x) =m3nxhg(1)=4m3n(1)=4m3n=4m=4+3nhg(x)=h(3x) =mn(3x) =m3nxhg(1)=4m3n(1)=4m3n=4m=4+3n

Question 6:
Given the function g : x → 3x – 2, find  
(a) the value of x when g(x) maps onto itself,
(b) the value of k such that g(2 – k) = 4k.

Solution:
(a)
  g(x)=x3x2=x3xx=2 2x=2x=1  g(x)=x3x2=x3xx=2 2x=2x=1

(b)
  g(x)=3x2g(2k)=4k3(2k)2=4k63k2=4k   7k=4 k=47  g(x)=3x2g(2k)=4k3(2k)2=4k63k2=4k   7k=4 k=47

Question 7:
Given the functions f : xpx + 1, g : x → 3x – 5 and fg(x) = 3px + q.  
Express p in terms of q.

Solution:
f(x)=px+1, g(x)=3x5fg(x)=p(3x5)+1 =3px5p+1Given fg(x)=3px+q3px5p+1=3px+q  5p+1=q   5p=q1  5p=1qp=1q5f(x)=px+1, g(x)=3x5fg(x)=p(3x5)+1 =3px5p+1Given fg(x)=3px+q3px5p+1=3px+q  5p+1=q   5p=q1  5p=1qp=1q5

Question 8:
Given the functions h : x → 3x + 1, and gh : x → 9x2 + 6x – 4, find  
(a) h-1 (x),
(b) g(x).

Solution:
(a)
Let h1(x)=y,thus  h(y)=x   3y+1=x3y=x1  y=x13  h1(x)=x13h1:xx13Let h1(x)=y,thus  h(y)=x   3y+1=x3y=x1  y=x13  h1(x)=x13h1:xx13


(b)
g[h(x)]=9x2+6x4g(3x+1)=9x2+6x4Let y=3x+1thus  x=y13 g(y)=9(y13)2+6(y13)4=9(y1)29+2(y1)4=y22y+1+2y24=y25 g(x)=x25

Leave a Comment