\

1.5.5 Circular Measure, Long Questions (Question 9)


Question 9:
In diagram 5, AOBDE, is a semicircle with centre O and has radius of 5cm. ABC is a right angle triangle.


It is given that ADDC=3.85 and DC=2.31 cm.ADDC=3.85 and DC=2.31 cm.  
[Use π = 3.142]
Calculate
(a) the value of θ, in radians,   [2 marks]
(b) the perimeter, in cm, of the segment ADE,    [3 marks]
(c) the area, in cm2, of the shaded region BCDF.   [5 marks]


Solution:
(a)
Given ADDC=3.85 and DC=2.31 cmAD=3.85×2.31=8.8935AC=8.8935+2.31=11.2035 cmcosθ=ABAC=1011.2035θ=26.80oθ=26.80o×π180o=0.4678 radGiven ADDC=3.85 and DC=2.31 cmAD=3.85×2.31=8.8935AC=8.8935+2.31=11.2035 cmcosθ=ABAC=1011.2035θ=26.80oθ=26.80o×π180o=0.4678 rad

(b)
∠AOD = 3.142 – (0.4678 × 2)
= 2.206 rad
Length of arc AED = 5 × 2.206
= 11.03 cm
Therefore, perimeter of the segment ADE
= 11.03 + 8.8935
= 19.924 cm

(c)
BC = √ AC2AB2
  = √11.20352 – 102
  = 5.052 cm

2.206 rad×180oπ=126.38oBOD=3.1422.206=0.936 radArea of shaded region BCDF=Area of  ABCArea of  AODArea of segment OBD=12(10)(5.052)12(5)(5)(sin126.38)12(5)2(0.936)=25.2610.0611.7=3.50 cm22.206 rad×180oπ=126.38oBOD=3.1422.206=0.936 radArea of shaded region BCDF=Area of  ABCArea of  AODArea of segment OBD=12(10)(5.052)12(5)(5)(sin126.38)12(5)2(0.936)=25.2610.0611.7=3.50 cm2


Leave a Comment