2.6 Quadratic Equations, SPM Practice (Paper 2)


2.6 Quadratic Equations, SPM Practice (Paper 2)
Question 3:
If α and β are the roots of the quadratic equation 3x2 + 2x– 5 = 0, form the quadratic equations that have the following roots.
(a)  2 α  and  2 β (b)  ( α + 2 β )  and  ( β + 2 α )

Solutions:
3x2 + 2x – 5 = 0
a = 3, b = 2, c = –5
The roots are α and β.
α + β = b a = 2 3 α β = c a = 5 3

(a)
The new roots are  2 α and 2 β . Sum of new roots = 2 α + 2 β = 2 β + 2 α α β                  = 2 ( α + β ) α β = 2 ( 2 3 ) 5 3 = 4 5

Product of new roots = ( 2 α ) ( 2 β ) = 4 α β                  = 4 5 3 = 12 5

Using the formula, x2– (sum of roots)x + product of roots = 0
The new quadratic equation is
x 2 ( 4 5 ) x + ( 12 5 ) = 0
5x2 – 4x– 12 = 0

(b)
The new roots are  ( α + 2 β ) and ( β + 2 α ) . Sum of new roots = ( α + 2 β ) + ( β + 2 α )
= α + β + ( 2 α + 2 β ) = α + β + 2 α + 2 β α β = α + β + 2 ( α + β ) α β = 4 5 + 2 ( 4 5 ) 12 5 = 4 5 2 3 = 2 15
Product of new roots = ( α + 2 β ) ( β + 2 α ) = α β + 2 + 2 + 4 α β
= 12 5 + 4 + 4 12 5 = 12 5 + 4 5 3 = 1 15

The new quadratic equation is
x 2 ( 2 15 ) x + ( 1 15 ) = 0
15x2 – 2x– 1 = 0

Leave a Reply

Your email address will not be published. Required fields are marked *