Question 22:
Solution:
y=34x2dydx=(2)34x=32xδy=47.7−48=−0.3Approximate change in x to yδxδy≈dxdyδx=dxdy×δyδx=23x×(−0.3)δx=23(8)×(−0.3)←y=4834x2=48x2=64x=8δx=−0.025
Given that
y=34x2
, find the approximate change in x which will cause y to decrease from 48 to 47.7.
y=34x2dydx=(2)34x=32xδy=47.7−48=−0.3Approximate change in x to yδxδy≈dxdyδx=dxdy×δyδx=23x×(−0.3)δx=23(8)×(−0.3)←y=4834x2=48x2=64x=8δx=−0.025
Question 23:
(a) Find the value of dydx when x = 2,
Solution:
(a)
y=15x+24x3y=15x+24x−3dydx=15−72x−4dydx=15−72x4When x=2dydx=15−7224=10.5
(b)
Approximate change in y to x in terms of k,δyδx≈dydxδy=dydx×δxδy=10.5×(2+k−2)δy=10.5k
Given that
y=15x+24x3
,
(a) Find the value of dydx when x = 2,
(b) Express in terms of k, the approximate change in y when x changes from 2 to
2 + k, where k is a small change.
(a)
y=15x+24x3y=15x+24x−3dydx=15−72x−4dydx=15−72x4When x=2dydx=15−7224=10.5
(b)
Approximate change in y to x in terms of k,δyδx≈dydxδy=dydx×δxδy=10.5×(2+k−2)δy=10.5k
Question 24:
Solution:
Area of circle, A=πr2dAdr=2πrApproximate increase in the area to radius,δAδr≈dAdrδA=dAdr×δrδA=(2πr)×(4.01−4)δA=[2π(4)]×(0.01)δA=0.08π cm2
If the radius of a circle increases from 4 cm to 4.01 cm, find the approximate increase in the area.
Area of circle, A=πr2dAdr=2πrApproximate increase in the area to radius,δAδr≈dAdrδA=dAdr×δrδA=(2πr)×(4.01−4)δA=[2π(4)]×(0.01)δA=0.08π cm2
Question 25:
Solution:
y=3t+5t2dydt=3+10tx=5t−1dxdt=5
(a)
dydx=dydt×dtdxdydx=(3+10t)×15dydx=3+10(x+15)5←x=5t−1t=x+15dydx=3+2x+25dydx=5+2x5
(b)
Small increase in t to x,δt=dtdx×δxδt=15×(5.01−5)δt=0.002
Given that y =3t+ 5t2 and x = 5t –1.
(a) Find
dydx
in terms of x,
(b) If x increases from 5 to 5.01, find the small increase in t.y=3t+5t2dydt=3+10tx=5t−1dxdt=5
(a)
dydx=dydt×dtdxdydx=(3+10t)×15dydx=3+10(x+15)5←x=5t−1t=x+15dydx=3+2x+25dydx=5+2x5
(b)
Small increase in t to x,δt=dtdx×δxδt=15×(5.01−5)δt=0.002