Loading [MathJax]/jax/output/CommonHTML/jax.js
\

2.10.6 Differentiation Short Questions (Question 22 – 25)


Question 22:
Given that   y=34x2 , find the approximate change in x which will cause y to decrease from 48 to 47.7.

Solution:
y=34x2dydx=(2)34x=32xδy=47.748=0.3Approximate change in x to yδxδydxdyδx=dxdy×δyδx=23x×(0.3)δx=23(8)×(0.3)y=4834x2=48x2=64x=8δx=0.025


Question 23:
Given that y=15x+24x3 ,

(a) Find the value of dydx when x = 2,
(b) Express in terms of k, the approximate change in when x changes from 2 to
  2 + k, where k is a small change.

Solution:
(a)
y=15x+24x3y=15x+24x3dydx=1572x4dydx=1572x4When x=2dydx=157224=10.5

(b)
Approximate change in y to x in terms of k,δyδxdydxδy=dydx×δxδy=10.5×(2+k2)δy=10.5k


Question 24:
If the radius of a circle increases from 4 cm to 4.01 cm, find the approximate increase in the area.

Solution:
Area of circle, A=πr2dAdr=2πrApproximate increase in the area to radius,δAδrdAdrδA=dAdr×δrδA=(2πr)×(4.014)δA=[2π(4)]×(0.01)δA=0.08π cm2


Question 25:
Given that y =3t+ 5t2 and x = 5t 1.
(a) Find dydx  in terms of x,
(b) If increases from 5 to 5.01, find the small increase in t.

Solution:
y=3t+5t2dydt=3+10tx=5t1dxdt=5

(a)
dydx=dydt×dtdxdydx=(3+10t)×15dydx=3+10(x+15)5x=5t1t=x+15dydx=3+2x+25dydx=5+2x5

(b)
Small increase in t to x,δt=dtdx×δxδt=15×(5.015)δt=0.002

Leave a Comment