Processing math: 100%
\

2.10.3 Differentiation Short Questions (Question 11 – 14)


Question 11:
Given that the graph of function f(x)=hx3+kx2  has a gradient function f(x)=12x2258x3 such that h and are constants. Find the values of and k.

Solution:
f(x)=hx3+kx2=hx3+kx2f(x)=3hx22kx3f(x)=3hx22kx3But it is given that f(x)=12x2258x3Hence, by comparison, 3h=12 and   2k=258h=4  k=129


Question 12:
Given that y=x2x+3, show that dydx=x2+6x(x+3)2Find d2ydx2 in the simplest form.

Solution:
y=x2x+3dydx=(x+3)(2x)x2.1(x+3)2=2x2+6xx2(x+3)2dydx=x2+6x(x+3)2 (shown)d2ydx2=(x+3)2(2x+6)(x2+6x).2(x+3)(x+3)4d2ydx2=(x+3)[(x+3)(2x+6)2(x2+6x)](x+3)4d2ydx2=[2x2+6x+6x+182x212x](x+3)3d2ydx2=18(x+3)3

Question 13:
If y=x2+4x, show that x2d2ydx22xdydx+2y=0.

Solution:
y=x2+4xdydx=2x+4d2ydx2=2x2d2ydx22xdydx+2y=x2(2)2x(2x+4)+2(x2+4x)=2x24x28x+2x2+8x=0 (Shown)


Question 14:
Given y = x (6 – x), express yd2ydx2+xdydx+18 in terms of in the simplest form.

Hence, find the value of which satisfies the equation  yd2ydx2+xdydx+18=0

Solution:
y=x(6x)=6xx2dydx=62xd2ydx2=2yd2ydx2+xdydx+18=(6xx2)(2)+x(62x)+18   =12x+2x2+6x2x2+18   =6x+18yd2ydx2+xdydx+18=0  6x+18=0 x=3

Leave a Comment