Question 11:
Given that the graph of function f(x)=hx3+kx2 has a gradient function f‘(x)=12x2−258x3 such that h and k are constants. Find the values of h and k.
Solution:
f(x)=hx3+kx2=hx3+kx−2f‘(x)=3hx2−2kx−3f‘(x)=3hx2−2kx3But it is given that f‘(x)=12x2−258x3Hence, by comparison, 3h=12 and 2k=258h=4 k=129
Given that the graph of function f(x)=hx3+kx2 has a gradient function f‘(x)=12x2−258x3 such that h and k are constants. Find the values of h and k.
Solution:
f(x)=hx3+kx2=hx3+kx−2f‘(x)=3hx2−2kx−3f‘(x)=3hx2−2kx3But it is given that f‘(x)=12x2−258x3Hence, by comparison, 3h=12 and 2k=258h=4 k=129
Question 12:
Given that y=x2x+3, show that dydx=x2+6x(x+3)2Find d2ydx2 in the simplest form.
Solution:
y=x2x+3dydx=(x+3)(2x)−x2.1(x+3)2=2x2+6x−x2(x+3)2dydx=x2+6x(x+3)2 (shown)d2ydx2=(x+3)2(2x+6)−(x2+6x).2(x+3)(x+3)4d2ydx2=(x+3)[(x+3)(2x+6)−2(x2+6x)](x+3)4d2ydx2=[2x2+6x+6x+18−2x2−12x](x+3)3d2ydx2=18(x+3)3
Given that y=x2x+3, show that dydx=x2+6x(x+3)2Find d2ydx2 in the simplest form.
Solution:
y=x2x+3dydx=(x+3)(2x)−x2.1(x+3)2=2x2+6x−x2(x+3)2dydx=x2+6x(x+3)2 (shown)d2ydx2=(x+3)2(2x+6)−(x2+6x).2(x+3)(x+3)4d2ydx2=(x+3)[(x+3)(2x+6)−2(x2+6x)](x+3)4d2ydx2=[2x2+6x+6x+18−2x2−12x](x+3)3d2ydx2=18(x+3)3
Question 13:
If y=x2+4x, show that x2d2ydx2−2xdydx+2y=0.
Solution:
y=x2+4xdydx=2x+4d2ydx2=2x2d2ydx2−2xdydx+2y=x2(2)−2x(2x+4)+2(x2+4x)=2x2−4x2−8x+2x2+8x=0 (Shown)
If y=x2+4x, show that x2d2ydx2−2xdydx+2y=0.
Solution:
y=x2+4xdydx=2x+4d2ydx2=2x2d2ydx2−2xdydx+2y=x2(2)−2x(2x+4)+2(x2+4x)=2x2−4x2−8x+2x2+8x=0 (Shown)
Question 14:
Hence, find the value of x which satisfies the equation yd2ydx2+xdydx+18=0
Solution:
y=x(6−x)=6x−x2dydx=6−2xd2ydx2=−2∴yd2ydx2+xdydx+18=(6x−x2)(−2)+x(6−2x)+18 =−12x+2x2+6x−2x2+18 =−6x+18yd2ydx2+xdydx+18=0 −6x+18=0 x=3
Given y = x (6 – x), express
yd2ydx2+xdydx+18
in terms of x in the simplest form.
Hence, find the value of x which satisfies the equation yd2ydx2+xdydx+18=0
Solution:
y=x(6−x)=6x−x2dydx=6−2xd2ydx2=−2∴yd2ydx2+xdydx+18=(6x−x2)(−2)+x(6−2x)+18 =−12x+2x2+6x−2x2+18 =−6x+18yd2ydx2+xdydx+18=0 −6x+18=0 x=3