\

2.10.2 Differentiation Short Questions (Question 6 – 10)


Question 6:
Given that f (x) = 3x2(4x 1)7, find f’(x). 

Solution:
f (x) = 3x2(4x 1)7
f’(x) = 3x2. 7(4x 1)6. 8x + (4x 1)7. 6x
f’(x) = 168x3 (4x 1)6 + 6x (4x 1)7
f’(x) = 6x (4x 1)6 [28x2+ (4x 1)]
f’(x) = 6x (4x 1)6 (32x 1)



Question 7:
Given that y = (1 + 4x)3(3x 1)4, find dydxdydx

Solution:
y = (1 + 4x)3(3x2 – 1)4
dydxdydx
= (1 + 4x)3. 4(3x2 – 1)3.6x + (3x2 – 1)4. 3(1 + 4x)2.4
= 24x (1 + 4x)3(3x2 – 1)3 + 12 (3x2 – 1)4(1 + 4x)2
= 12 (1 + 4x)2(3x2 – 1)3 [2x (1 + 4x) + (3x2 – 1)]
= 12 (1 + 4x)2(3x2 – 1)3 [2x + 8x2 + 3x2 – 1]
= 12 (1 + 4x)2(3x2 – 1)3 [11x2 + 2x  – 1]



Question 8:
Given that f(x)=3x4x21 , find f(x).Given that f(x)=3x4x21 , find f(x). .

Solution:
f(x)=3x4x21=3x(4x21)12f(x)=3x.12(4x21)12.8x+(4x21)12.3f(x)=12x2(4x21)12+3(4x21)12f(x)=3(4x21)12[4x2+(4x21)]f(x)=3(8x21)(4x21)f(x)=3x4x21=3x(4x21)12f(x)=3x.12(4x21)12.8x+(4x21)12.3f(x)=12x2(4x21)12+3(4x21)12f(x)=3(4x21)12[4x2+(4x21)]f(x)=3(8x21)(4x21)


Question 9:
Given that y=15x4x3, find dydx.Given that y=15x4x3, find dydx.

Solution:
dydx=vdudxudvdxv2=(x3).20x3(15x4).1(x3)2dydx=20x4+60x31+5x4(x3)2dydx=15x4+60x31(x3)2dydx=vdudxudvdxv2=(x3).20x3(15x4).1(x3)2dydx=20x4+60x31+5x4(x3)2dydx=15x4+60x31(x3)2


Question 10:
Given that f(x)=(x23)513x, find f(0).

Solution:
f(x)=(x23)513xf(x)=vdudxudvdxv2=(13x).5(x23)4.2x(x23)5.3(13x)2f(x)=10x(13x)(x23)4+3(x23)5(13x)2f(x)=(x23)4[10x30x2+3(x23)](13x)2f(x)=(x23)4[27x2+10x9](13x)2f(0)=(023)4[27(0)2+10(0)9](13(0))2f(0)=81×(9)1=729

Leave a Comment