Question 6:
Solution:
Given that f (x) = 3x2(4x2 – 1)7, find f’(x).
Solution:
f (x) = 3x2(4x2 – 1)7
f’(x) = 3x2. 7(4x2 – 1)6. 8x + (4x2 – 1)7. 6x
f’(x) = 168x3 (4x2 – 1)6 + 6x (4x2 – 1)7
f’(x) = 6x (4x2 – 1)6 [28x2+ (4x2 – 1)]
f’(x) = 6x (4x2 – 1)6 (32x2 – 1)
Question 7:
Solution:
Given that y = (1 + 4x)3(3x2 – 1)4, find
dydxdydx
.
Solution:
y = (1 + 4x)3(3x2 – 1)4
dydxdydx
= (1 + 4x)3. 4(3x2 – 1)3.6x + (3x2 – 1)4. 3(1 + 4x)2.4
= 24x (1 + 4x)3(3x2 – 1)3 + 12 (3x2 – 1)4(1 + 4x)2
= 12 (1 + 4x)2(3x2 – 1)3 [2x (1 + 4x) + (3x2 – 1)]
= 12 (1 + 4x)2(3x2 – 1)3 [2x + 8x2 + 3x2 – 1]
= 12 (1 + 4x)2(3x2 – 1)3 [11x2 + 2x – 1]
Question 8:
Given that f(x)=3x√4x2−1 , find f‘(x).Given that f(x)=3x√4x2−1 , find f‘(x). .
Solution:
f(x)=3x√4x2−1=3x(4x2−1)12f‘(x)=3x.12(4x2−1)−12.8x+(4x2−1)12.3f‘(x)=12x2(4x2−1)−12+3(4x2−1)12f‘(x)=3(4x2−1)−12[4x2+(4x2−1)]f‘(x)=3(8x2−1)√(4x2−1)f(x)=3x√4x2−1=3x(4x2−1)12f‘(x)=3x.12(4x2−1)−12.8x+(4x2−1)12.3f‘(x)=12x2(4x2−1)−12+3(4x2−1)12f‘(x)=3(4x2−1)−12[4x2+(4x2−1)]f‘(x)=3(8x2−1)√(4x2−1)
Given that f(x)=3x√4x2−1 , find f‘(x).Given that f(x)=3x√4x2−1 , find f‘(x). .
Solution:
f(x)=3x√4x2−1=3x(4x2−1)12f‘(x)=3x.12(4x2−1)−12.8x+(4x2−1)12.3f‘(x)=12x2(4x2−1)−12+3(4x2−1)12f‘(x)=3(4x2−1)−12[4x2+(4x2−1)]f‘(x)=3(8x2−1)√(4x2−1)f(x)=3x√4x2−1=3x(4x2−1)12f‘(x)=3x.12(4x2−1)−12.8x+(4x2−1)12.3f‘(x)=12x2(4x2−1)−12+3(4x2−1)12f‘(x)=3(4x2−1)−12[4x2+(4x2−1)]f‘(x)=3(8x2−1)√(4x2−1)
Question 9:
Given that y=1−5x4x−3, find dydx.Given that y=1−5x4x−3, find dydx.
Solution:
dydx=vdudx−udvdxv2=(x−3).−20x3−(1−5x4).1(x−3)2dydx=−20x4+60x3−1+5x4(x−3)2dydx=−15x4+60x3−1(x−3)2dydx=vdudx−udvdxv2=(x−3).−20x3−(1−5x4).1(x−3)2dydx=−20x4+60x3−1+5x4(x−3)2dydx=−15x4+60x3−1(x−3)2
Given that y=1−5x4x−3, find dydx.Given that y=1−5x4x−3, find dydx.
Solution:
dydx=vdudx−udvdxv2=(x−3).−20x3−(1−5x4).1(x−3)2dydx=−20x4+60x3−1+5x4(x−3)2dydx=−15x4+60x3−1(x−3)2dydx=vdudx−udvdxv2=(x−3).−20x3−(1−5x4).1(x−3)2dydx=−20x4+60x3−1+5x4(x−3)2dydx=−15x4+60x3−1(x−3)2
Question 10:
Given that f(x)=(x2−3)51−3x, find f‘(0).
Solution:
f(x)=(x2−3)51−3xf‘(x)=vdudx−udvdxv2=(1−3x).5(x2−3)4.2x−(x2−3)5.−3(1−3x)2f‘(x)=10x(1−3x)(x2−3)4+3(x2−3)5(1−3x)2f‘(x)=(x2−3)4[10x−30x2+3(x2−3)](1−3x)2f‘(x)=(x2−3)4[−27x2+10x−9](1−3x)2∴f‘(0)=(02−3)4[−27(0)2+10(0)−9](1−3(0))2f‘(0)=81×(−9)1=−729
Given that f(x)=(x2−3)51−3x, find f‘(0).
Solution:
f(x)=(x2−3)51−3xf‘(x)=vdudx−udvdxv2=(1−3x).5(x2−3)4.2x−(x2−3)5.−3(1−3x)2f‘(x)=10x(1−3x)(x2−3)4+3(x2−3)5(1−3x)2f‘(x)=(x2−3)4[10x−30x2+3(x2−3)](1−3x)2f‘(x)=(x2−3)4[−27x2+10x−9](1−3x)2∴f‘(0)=(02−3)4[−27(0)2+10(0)−9](1−3(0))2f‘(0)=81×(−9)1=−729