\

2.10.1 Differentiation Short Questions (Question 1 – 5)


Question 1:
Differentiate the expression 2x (4x2 + 2x – 5) with respect to x.

Solution:
2x (4x2 + 2x – 5) = 8x3 + 4x2– 10x
ddxddx (8x3 + 4x2 – 10x)
= 24x + 8x –10 


Question 2:
Given that y=x3+2x2+13x, find dydx.Given that y=x3+2x2+13x, find dydx. .

Solution:
y=x3+2x2+13xy=x33x+2x23x+13xy=x23+2x3+13x1dydx=2x3+2313x2dydx=2x3+2313x2y=x3+2x2+13xy=x33x+2x23x+13xy=x23+2x3+13x1dydx=2x3+2313x2dydx=2x3+2313x2

Question 3:
Given that y=35x+1, find dydxGiven that y=35x+1, find dydx

Solution:
y=35x+1=3(5x+1)12dydx=12.3(5x+1)32(5)dydx=152[(5x+1)3]12dydx=152(5x+1)3y=35x+1=3(5x+1)12dydx=12.3(5x+1)32(5)dydx=152[(5x+1)3]12dydx=152(5x+1)3

Question 4:
Find dsdtdsdt for each of the following functions.
(a) s=(t3t)2(b) s=(t+1)(35t)t2(a) s=(t3t)2(b) s=(t+1)(35t)t2

Solution:
(a)
s=(t3t)2s=(t3t)(t3t)s=t26+9t2s=t26+9t2dsdt=2t18t3=2t18t3s=(t3t)2s=(t3t)(t3t)s=t26+9t2s=t26+9t2dsdt=2t18t3=2t18t3

(b)
s=(t+1)(35t)t2s=3t5t2+35tt2=5t22t+3t2s=52t+3t2=52t1+3t2dsdt=2t26t3=2t26t3s=(t+1)(35t)t2s=3t5t2+35tt2=5t22t+3t2s=52t+3t2=52t1+3t2dsdt=2t26t3=2t26t3


Question 5:
Given that  y=35u5y=35u5 , where u = 4+ 1. Find dydxdydx in terms of x.

Solution:
y=35u5, u=4x+1y=35(4x+1)5dydx=5.35(4x+1)4.4dydx=12(4x+1)4y=35u5, u=4x+1y=35(4x+1)5dydx=5.35(4x+1)4.4dydx=12(4x+1)4

Leave a Comment