Question 1:
Solution:
Differentiate the expression 2x (4x2 + 2x – 5) with respect to x.
2x (4x2 + 2x – 5) = 8x3 + 4x2– 10x
ddxddx
(8x3 + 4x2 – 10x)
= 24x + 8x –10
Question 2:
Given that y=x3+2x2+13x, find dydx.Given that y=x3+2x2+13x, find dydx. .
Solution:
y=x3+2x2+13xy=x33x+2x23x+13xy=x23+2x3+13x−1dydx=2x3+23−13x−2dydx=2x3+23−13x2y=x3+2x2+13xy=x33x+2x23x+13xy=x23+2x3+13x−1dydx=2x3+23−13x−2dydx=2x3+23−13x2
Given that y=x3+2x2+13x, find dydx.Given that y=x3+2x2+13x, find dydx. .
Solution:
y=x3+2x2+13xy=x33x+2x23x+13xy=x23+2x3+13x−1dydx=2x3+23−13x−2dydx=2x3+23−13x2y=x3+2x2+13xy=x33x+2x23x+13xy=x23+2x3+13x−1dydx=2x3+23−13x−2dydx=2x3+23−13x2
Question 3:
Given that y=3√5x+1, find dydxGiven that y=3√5x+1, find dydx
Solution:
y=3√5x+1=3(5x+1)−12dydx=−12.3(5x+1)−32(5)dydx=−152[(5x+1)3]12dydx=−152√(5x+1)3y=3√5x+1=3(5x+1)−12dydx=−12.3(5x+1)−32(5)dydx=−152[(5x+1)3]12dydx=−152√(5x+1)3
Given that y=3√5x+1, find dydxGiven that y=3√5x+1, find dydx
Solution:
y=3√5x+1=3(5x+1)−12dydx=−12.3(5x+1)−32(5)dydx=−152[(5x+1)3]12dydx=−152√(5x+1)3y=3√5x+1=3(5x+1)−12dydx=−12.3(5x+1)−32(5)dydx=−152[(5x+1)3]12dydx=−152√(5x+1)3
Question 4:
Solution:
(a)
s=(t−3t)2s=(t−3t)(t−3t)s=t2−6+9t2s=t2−6+9t−2dsdt=2t−18t−3=2t−18t3s=(t−3t)2s=(t−3t)(t−3t)s=t2−6+9t2s=t2−6+9t−2dsdt=2t−18t−3=2t−18t3
(b)
s=(t+1)(3−5t)t2s=3t−5t2+3−5tt2=−5t2−2t+3t2s=−5−2t+3t2=−5−2t−1+3t−2dsdt=2t−2−6t−3=2t2−6t3s=(t+1)(3−5t)t2s=3t−5t2+3−5tt2=−5t2−2t+3t2s=−5−2t+3t2=−5−2t−1+3t−2dsdt=2t−2−6t−3=2t2−6t3
Find
dsdtdsdt
for each of the following functions.
(a) s=(t−3t)2(b) s=(t+1)(3−5t)t2(a) s=(t−3t)2(b) s=(t+1)(3−5t)t2
(a)
s=(t−3t)2s=(t−3t)(t−3t)s=t2−6+9t2s=t2−6+9t−2dsdt=2t−18t−3=2t−18t3s=(t−3t)2s=(t−3t)(t−3t)s=t2−6+9t2s=t2−6+9t−2dsdt=2t−18t−3=2t−18t3
(b)
s=(t+1)(3−5t)t2s=3t−5t2+3−5tt2=−5t2−2t+3t2s=−5−2t+3t2=−5−2t−1+3t−2dsdt=2t−2−6t−3=2t2−6t3s=(t+1)(3−5t)t2s=3t−5t2+3−5tt2=−5t2−2t+3t2s=−5−2t+3t2=−5−2t−1+3t−2dsdt=2t−2−6t−3=2t2−6t3
Question 5:
Solution:
y=35u5, u=4x+1y=35(4x+1)5dydx=5.35(4x+1)4.4dydx=12(4x+1)4y=35u5, u=4x+1y=35(4x+1)5dydx=5.35(4x+1)4.4dydx=12(4x+1)4
Given that
y=35u5y=35u5
, where u = 4x + 1. Find
dydxdydx
in terms of x.
Solution:
y=35u5, u=4x+1y=35(4x+1)5dydx=5.35(4x+1)4.4dydx=12(4x+1)4y=35u5, u=4x+1y=35(4x+1)5dydx=5.35(4x+1)4.4dydx=12(4x+1)4