Processing math: 100%
\

1.5.2 Circular Measure Long Questions (Question 3 & 4 )


Question 3:
Diagram below shows two circles. The larger circle has centre A and radius 20 cm. The smaller circle has centre B and radius 12 cm. The circles touch at point R. The straight line PQ is a common tangent to the circles at point P and point Q.

[Use π = 3.142]
Given that angle PAR = θ radians,
(a) show that θ = 1.32 ( to two decimal places),
(b) calculate the length, in cm, of the minor arc QR,  
(c) calculate the area, in cm2, of the shaded region.



Solution:
(a)

In BSAcosθ=832=14  θ=1.32 rad (2 d.p.)

(b)
Angle QBR = 3.142 – 1.32 = 1.822 rad
Length of minor arc QR
= 12 × 1.822
= 21.86 cm

(c)
PQ=32282=30.98 cm
Area of the shaded region
= Area of trapezium PQBA– Area of sector QBR – Area of sector PAR
½ (12 + 20) (30.98) – ½ (12)2 (1.822) – ½ (20)2(1.32)  
= 495.68 – 131.18 – 264
= 100.5 cm2


Question 4:
Diagram below shows a sector QPR with centre P and sector POQ, with centre O.

It is given that OP = 17 cm and PQ = 8.8 cm.
[Use π = 3.142]
Calculate
(a) angle OPQ, in radians,
(b) the perimeter, in cm, of sector QPR,
(c) the area, in cm2, of the shaded region.


Solution:
(a)OPQ=OQPx+x+30=180   2x=150  x=75OPQ=75×3.142180   =1.3092 radians


(b)Length of arc QR=rθ   =8.8×1.3092   =11.52 cmPerimeter of sector QPR=11.52+8.8+8.8=29.12 cm


(c)30o=30×3.142180=0.5237 radArea of segment PQ=12r2(θsinθ)=12×172×(0.5237sin30)=12×289×(0.52370.5)=3.4247 cm2Area of sector QPR=12r2θ=12×8.82×1.3092=50.692 cm2Area of shaded region=3.4247+50.692=54.1167 cm2

Leave a Comment