Processing math: 100%
\

1.5.1 Circular Measure Long Questions (Question 1 & 2)


Question 1:
Diagram shows a circle, centre O and radius 8 cm inscribed in a sector SPT of a circle at centre P.  The straight lines, SP and TP, are tangents to the circle at point Q and point R, respectively.

[Use p= 3.142]
Calculate
(a) the length, in cm, of the arc ST,
(b) the area, in cm2, of the shaded region.


Solution:
(a)
For triangle OPQsin30=8OPOP=8sin30=16 cmRadius of sector SPT=16+8=24 cmSPT=60×3.142180=1.047 radianLength of arc ST=24×1.047=25.14 cm


(b)
For triangle OPQ:tan30=8QPPQ=8tan30=13.86 cmQOR=2(60)=120Reflex angle QOR=360120=240240=3.142180×240=4.189 radianArea of shaded region=(  Area of sector SPT)(Area of major   sector OQR)(Area of triangle OPQ and OPR)=12(24)2(1.047)12(8)2(4.189)2(12×8×13.86)=301.54134.05110.88=56.61 cm2

Question 2:
Diagram below shows a semicircle PTQ, with centre O and quadrant of a circle RST, with centre R.

[Use π = 3.142]
Calculate
(a) the value of θ, in radians,
(b) the perimeter, in cm, of the whole diagram,
(c) the area, in cm2, of the shaded region.


Solution:
(a)sinROT=2.55 ROT=30oθ=180o30o=150o  =150×π180  =2.618 rad


(b)Length of arc PT=rθ   =5×2.618   =13.09 cmLength of arc ST=π2×2.5  =3.9275 cmOR2+2.52=52  OR2=522.52OR=4.330Perimeter=13.09+3.9275+2.5+4.330+5   =28.8475 cm


(c)Area of shaded region=Area of quadrant RSTArea of quadrant RQTArea of quadrant RQT=Area of OQTArea of OTR=12(5)2×(30×π180)12(4.33)(2.5)=1.1333 cm2Area of shaded region=Area of quadrant RSTArea of quadrant RQT=12(2.5)2×(90×π180)1.1333=3.7661 cm2

1 thought on “1.5.1 Circular Measure Long Questions (Question 1 & 2)”

Leave a Comment