\

7.4.1 Statistics Short Questions (Question 1 & 2)


Question 1:
Given that the standard deviation of five numbers is 6 and the sum of the squares of these five numbers is 260.  Find the mean of this set of numbers.

Solution:

Given that σ=6Σx2=260.σ=6Σx2nˉX2=6Σx2nˉX2=362605ˉX2=36ˉX2=16ˉX=±4mean = ±4Given that σ=6Σx2=260.σ=6Σx2n¯¯¯X2=6Σx2n¯¯¯X2=362605¯¯¯X2=36¯¯¯X2=16¯¯¯X=±4mean = ±4



Question 2:
Both of the mean and the standard deviation of 1, 3, 7, 15, m and n are 6.  Find
(a) the value of m + n,
(b) the possible values of  n.

Solution:
(a)
Given mean = 6Σxn=6Σx6=6Given mean = 6Σxn=6Σx6=6  
1 + 3 + 7 + 15 + m + n= 36
26 + m + n= 36
m + n = 10

(b)
σ=6σ2=36Σx2nˉX2=361+9+49+225+m2+n2662=36284+m2+n2636=36284+m2+n26=72284+m2+n2=432m2+n2=148From (a), m=10n(10n)2+n2=14810020n+n2+n2=1482n220n48=0n210n24=0(n6)(n+4)=0n=6 or 4σ=6σ2=36Σx2n¯¯¯X2=361+9+49+225+m2+n2662=36284+m2+n2636=36284+m2+n26=72284+m2+n2=432m2+n2=148From (a), m=10n(10n)2+n2=14810020n+n2+n2=1482n220n48=0n210n24=0(n6)(n+4)=0n=6 or 4

Leave a Comment